IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v73y2013icp33-40.html
   My bibliography  Save this article

Industrial metabolism of PVC in China: A dynamic material flow analysis

Author

Listed:
  • Zhou, Yucheng
  • Yang, Ning
  • Hu, Shanying

Abstract

In China, the rapid development of the polyvinylchloride (PVC) industry will inevitably lead to various environmental problems. This paper studies the PVC metabolism further by (1) constructing dynamic models based on material flow analysis (MFA), (2) introducing calculation on detailed lifetime distribution of different types of products and recycling, and (3) obtaining the performances of waste emissions and accumulation as a function of raw material input and time. Based on system evolution theory and population development models, the developing trend of the PVC industry is studied, and annual consumptions in future years are predicted. The annual emission and accumulation after metabolism can be calculated by tracking the amount of raw material input, existing form and process flow for a single year (2003), as well as over a longer period (from 1958 to 2048) in China. Analysis indicates that over 0.6 billion tons of PVC waste will have accumulated in the environment by the end of 2050. In this scenario analysis, the effects of product structure, lifetime distribution, mechanical recycling, chemical recycling and incineration on waste output are all taken into consideration. The product metabolism process can be decelerated by changing these factors appropriately. However, mechanical recycling and chemical recycling are the most effective solutions.

Suggested Citation

  • Zhou, Yucheng & Yang, Ning & Hu, Shanying, 2013. "Industrial metabolism of PVC in China: A dynamic material flow analysis," Resources, Conservation & Recycling, Elsevier, vol. 73(C), pages 33-40.
  • Handle: RePEc:eee:recore:v:73:y:2013:i:c:p:33-40
    DOI: 10.1016/j.resconrec.2012.12.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344912002303
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2012.12.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mingming Hu & Ester Van Der Voet & Gjalt Huppes, 2010. "Dynamic Material Flow Analysis for Strategic Construction and Demolition Waste Management in Beijing," Journal of Industrial Ecology, Yale University, vol. 14(3), pages 440-456, June.
    2. Graedel, T. E. & Bertram, M. & Fuse, K. & Gordon, R. B. & Lifset, R. & Rechberger, H. & Spatari, S., 2002. "The contemporary European copper cycle: The characterization of technological copper cycles," Ecological Economics, Elsevier, vol. 42(1-2), pages 9-26, August.
    3. Kleijn, Rene & Huele, Ruben & van der Voet, Ester, 2000. "Dynamic substance flow analysis: the delaying mechanism of stocks, with the case of PVC in Sweden," Ecological Economics, Elsevier, vol. 32(2), pages 241-254, February.
    4. Elshkaki, Ayman & van der Voet, Ester & Timmermans, Veerle & Van Holderbeke, Mirja, 2005. "Dynamic stock modelling: A method for the identification and estimation of future waste streams and emissions based on past production and product stock characteristics," Energy, Elsevier, vol. 30(8), pages 1353-1363.
    5. Hu, Mingming & Pauliuk, Stefan & Wang, Tao & Huppes, Gjalt & van der Voet, Ester & Müller, Daniel B., 2010. "Iron and steel in Chinese residential buildings: A dynamic analysis," Resources, Conservation & Recycling, Elsevier, vol. 54(9), pages 591-600.
    6. van der Voet, Ester & Kleijn, Rene & Huele, Ruben & Ishikawa, Masanobu & Verkuijlen, Evert, 2002. "Predicting future emissions based on characteristics of stocks," Ecological Economics, Elsevier, vol. 41(2), pages 223-234, May.
    7. Spatari, S. & Bertram, M. & Gordon, Robert B. & Henderson, K. & Graedel, T.E., 2005. "Twentieth century copper stocks and flows in North America: A dynamic analysis," Ecological Economics, Elsevier, vol. 54(1), pages 37-51, July.
    8. Shinichiro Nakamura & Kenichi Nakajima & Yoshie Yoshizawa & Kazuyo Matsubae‐Yokoyama & Tetsuya Nagasaka, 2009. "Analyzing Polyvinyl Chloride in Japan With the Waste Input−Output Material Flow Analysis Model," Journal of Industrial Ecology, Yale University, vol. 13(5), pages 706-717, October.
    9. Binder, Claudia & Bader, Hans-Peter & Scheidegger, Ruth & Baccini, Peter, 2001. "Dynamic models for managing durables using a stratified approach: the case of Tunja, Colombia," Ecological Economics, Elsevier, vol. 38(2), pages 191-207, August.
    10. Guo, Xueyi & Zhong, Juya & Song, Yu & Tian, Qinghua, 2010. "Substance flow analysis of zinc in China," Resources, Conservation & Recycling, Elsevier, vol. 54(3), pages 171-177.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chunyan Wang & Yi Liu & Wei‐Qiang Chen & Bing Zhu & Shen Qu & Ming Xu, 2021. "Critical review of global plastics stock and flow data," Journal of Industrial Ecology, Yale University, vol. 25(5), pages 1300-1317, October.
    2. Duygan, Mert & Meylan, Grégoire, 2015. "Strategic management of WEEE in Switzerland—combining material flow analysis with structural analysis," Resources, Conservation & Recycling, Elsevier, vol. 103(C), pages 98-109.
    3. Ciacci, L. & Passarini, F. & Vassura, I., 2017. "The European PVC cycle: In-use stock and flows," Resources, Conservation & Recycling, Elsevier, vol. 123(C), pages 108-116.
    4. Youliang Chen & Yingxiang Quan & Hamed Karimian & Xuexi Yang, 2023. "Mapping Provincial Stocks and Wastes of Passenger-Vehicle Plastics in China Based on Dynamic Material Flow Analysis and GIS: 1985–2019," Sustainability, MDPI, vol. 15(9), pages 1-19, April.
    5. Mengqing Kan & Chunyan Wang & Bing Zhu & Wei‐Qiang Chen & Yi Liu & Yucheng Ren & Ming Xu, 2023. "Seven decades of plastic flows and stocks in the United States and pathways toward zero plastic pollution by 2050," Journal of Industrial Ecology, Yale University, vol. 27(6), pages 1538-1552, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cao, Zhi & Shen, Lei & Liu, Litao & Zhao, Jianan & Zhong, Shuai & Kong, Hanxiao & Sun, Yanzhi, 2017. "Estimating the in-use cement stock in China: 1920–2013," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 21-31.
    2. Spatari, S. & Bertram, M. & Gordon, Robert B. & Henderson, K. & Graedel, T.E., 2005. "Twentieth century copper stocks and flows in North America: A dynamic analysis," Ecological Economics, Elsevier, vol. 54(1), pages 37-51, July.
    3. B. Muller, Daniel, 2006. "Stock dynamics for forecasting material flows--Case study for housing in The Netherlands," Ecological Economics, Elsevier, vol. 59(1), pages 142-156, August.
    4. Zhang, Ling & Yuan, Zengwei & Bi, Jun, 2011. "Predicting future quantities of obsolete household appliances in Nanjing by a stock-based model," Resources, Conservation & Recycling, Elsevier, vol. 55(11), pages 1087-1094.
    5. Binder, Claudia R. & Hofer, Christoph & Wiek, Arnim & Scholz, Roland W., 2004. "Transition towards improved regional wood flows by integrating material flux analysis and agent analysis: the case of Appenzell Ausserrhoden, Switzerland," Ecological Economics, Elsevier, vol. 49(1), pages 1-17, May.
    6. Taulo, J.L. & Sebitosi, A.B., 2016. "Material and energy flow analysis of the Malawian tea industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1337-1350.
    7. Binder, Claudia R. & Mosler, Hans-Joachim, 2007. "Waste-resource flows of short-lived goods in households of Santiago de Cuba," Resources, Conservation & Recycling, Elsevier, vol. 51(2), pages 265-283.
    8. Ermelinda M. Harper, 2008. "A Product-Level Approach to Historical Material Flow Analysis," Journal of Industrial Ecology, Yale University, vol. 12(5-6), pages 768-784, October.
    9. Yan, Lingyu & Wang, Anjian & Chen, Qishen & Li, Jianwu, 2013. "Dynamic material flow analysis of zinc resources in China," Resources, Conservation & Recycling, Elsevier, vol. 75(C), pages 23-31.
    10. Wang, Minxi & Chen, Wu & Zhou, Yang & Li, Xin, 2017. "Assessment of potential copper scrap in China and policy recommendation," Resources Policy, Elsevier, vol. 52(C), pages 235-244.
    11. Daigo, Ichiro & Hashimoto, Susumu & Matsuno, Yasunari & Adachi, Yoshihiro, 2009. "Material stocks and flows accounting for copper and copper-based alloys in Japan," Resources, Conservation & Recycling, Elsevier, vol. 53(4), pages 208-217.
    12. Matsuno, Yasunari & Hur, Tak & Fthenakis, Vasilis, 2012. "Dynamic modeling of cadmium substance flow with zinc and steel demand in Japan," Resources, Conservation & Recycling, Elsevier, vol. 61(C), pages 83-90.
    13. Tsiliyannis, Christos Aristeides, 2015. "Sustainability by cyclic manufacturing: Assessment of resource preservation under uncertain growth and returns," Resources, Conservation & Recycling, Elsevier, vol. 103(C), pages 155-170.
    14. Le Boulzec, Hugo & Delannoy, Louis & Andrieu, Baptiste & Verzier, François & Vidal, Olivier & Mathy, Sandrine, 2022. "Dynamic modeling of global fossil fuel infrastructure and materials needs: Overcoming a lack of available data," Applied Energy, Elsevier, vol. 326(C).
    15. Lu, Bin & Liu, Jingru & Yang, Jianxin, 2017. "Substance flow analysis of lithium for sustainable management in mainland China: 2007–2014," Resources, Conservation & Recycling, Elsevier, vol. 119(C), pages 109-116.
    16. Tomer Fishman & Rupert J. Myers & Orlando Rios & T.E. Graedel, 2018. "Implications of Emerging Vehicle Technologies on Rare Earth Supply and Demand in the United States," Resources, MDPI, vol. 7(1), pages 1-15, January.
    17. Liu, Jian & An, Rui & Xiao, Rongge & Yang, Yongwei & Wang, Gaoshang & Wang, Qian, 2017. "Implications from substance flow analysis, supply chain and supplier’ risk evaluation in iron and steel industry in Mainland China," Resources Policy, Elsevier, vol. 51(C), pages 272-282.
    18. Rafaela Tirado & Adélaïde Aublet & Sylvain Laurenceau & Mathieu Thorel & Mathilde Louërat & Guillaume Habert, 2021. "Component-Based Model for Building Material Stock and Waste-Flow Characterization: A Case in the Île-de-France Region," Sustainability, MDPI, vol. 13(23), pages 1-34, November.
    19. Chen, Wu & Wang, Minxi & Li, Xin, 2016. "Analysis of copper flows in the United States: 1975–2012," Resources, Conservation & Recycling, Elsevier, vol. 111(C), pages 67-76.
    20. Camilo Lesmes-Fabian & Claudia R. Binder, 2013. "Pesticide Flow Analysis to Assess Human Exposure in Greenhouse Flower Production in Colombia," IJERPH, MDPI, vol. 10(4), pages 1-18, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:73:y:2013:i:c:p:33-40. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.