IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v119y2017icp4-11.html
   My bibliography  Save this article

Life-cycle carbon footprint analysis of magnesia products

Author

Listed:
  • An, Jing
  • Xue, Xiangxin

Abstract

Liaoning Province in China contains significant magnesite deposits and thus has become the country’s largest production and export base for the magnesia raw materials and refractories. Unfortunately, the processing of such materials and refractories contributes significantly to the carbon emissions of the magnesite industry. In the present study, the carbon footprints associated with magnesia production processes were analyzed and compared using the life cycle assessment method of cradle-to-gate in order to provide a theoretical basis for improving the production processes, optimizing the product structure and for the formulation of energy conservation and emission reduction measures. In order to show the results against changes in key parameters, the sensitivity analysis was carried out. The results show that the total carbon footprints of light calcined magnesia and fused magnesia are the lowest and highest, respectively. In addition, one-step calcination method with the material of magnesite was found to be cleaner than the two-step calcination method with the material of light calcined magnesia. The direct carbon footprints resulting from the magnesite decomposition processes in the making of all magnesia products are very similar, while the emissions resulting from fuel combustion to produce sintered magnesia are high, especially in the case of two-step calcination. To reduce the total carbon footprints of light calcined magnesia and sintered magnesia, emphasis should be placed on the direct carbon footprints resulting from the production processes. In the case of fused magnesia, the key to reducing the carbon footprint is to decrease electricity consumption by improving the thermal efficiency of heating furnaces. CO2 emissions from the magnesite decomposition process can best be managed through capture and reuse. Overall, it is recommended that various enterprises should take action to implement CO2 recycling.

Suggested Citation

  • An, Jing & Xue, Xiangxin, 2017. "Life-cycle carbon footprint analysis of magnesia products," Resources, Conservation & Recycling, Elsevier, vol. 119(C), pages 4-11.
  • Handle: RePEc:eee:recore:v:119:y:2017:i:c:p:4-11
    DOI: 10.1016/j.resconrec.2016.09.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344916302713
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2016.09.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Geoffrey Hammond, 2007. "Time to give due weight to the 'carbon footprint' issue," Nature, Nature, vol. 445(7125), pages 256-256, January.
    2. Druckman, Angela & Jackson, Tim, 2009. "The carbon footprint of UK households 1990-2004: A socio-economically disaggregated, quasi-multi-regional input-output model," Ecological Economics, Elsevier, vol. 68(7), pages 2066-2077, May.
    3. Kwon, Gui-Rok & Woo, Seung H. & Lim, Seong-Rin, 2015. "Industrial ecology-based strategies to reduce the embodied CO2 of magnesium metal," Resources, Conservation & Recycling, Elsevier, vol. 104(PA), pages 206-212.
    4. Tan, Raymond R. & Aviso, Kathleen B. & Barilea, Ivan U. & Culaba, Alvin B. & Cruz, Jose B., 2012. "A fuzzy multi-regional input–output optimization model for biomass production and trade under resource and footprint constraints," Applied Energy, Elsevier, vol. 90(1), pages 154-160.
    5. Scholz, Katharina & Eriksson, Mattias & Strid, Ingrid, 2015. "Carbon footprint of supermarket food waste," Resources, Conservation & Recycling, Elsevier, vol. 94(C), pages 56-65.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nikolaos Margaritis & Christos Evaggelou & Panagiotis Grammelis & Roberto Arévalo & Haris Yiannoulakis & Polykarpos Papageorgiou, 2023. "Application of Flexible Tools in Magnesia Sector: The Case of Grecian Magnesite," Sustainability, MDPI, vol. 15(16), pages 1-30, August.
    2. Yao, Dong & Xu, Zaifeng & Qi, Huaqing & Zhu, Zhaoyou & Gao, Jun & Wang, Yinglong & Cui, Peizhe, 2022. "Carbon footprint and water footprint analysis of generating synthetic natural gas from biomass," Renewable Energy, Elsevier, vol. 186(C), pages 780-789.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Caggiani, Leonardo & Ottomanelli, Michele & Dell’Orco, Mauro, 2014. "Handling uncertainty in Multi Regional Input-Output models by entropy maximization and fuzzy programming," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 71(C), pages 159-172.
    2. Shaojian Qu & Hao Cai & Dandan Xu & Nabé Mohamed, 2021. "Uncertainty in the prediction and management of CO2 emissions: a robust minimum entropy approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(3), pages 2419-2438, July.
    3. Sanmang Wu & Yalin Lei & Shantong Li, 2017. "Provincial carbon footprints and interprovincial transfer of embodied CO2 emissions in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(1), pages 537-558, January.
    4. Domingo Gil-Giménez & Gladys Rolo-González & Ernesto Suárez & Gabriel Muinos, 2021. "The Influence of Environmental Self-Identity on the Relationship between Consumer Identities and Frugal Behavior," Sustainability, MDPI, vol. 13(17), pages 1-15, August.
    5. Nelson, Ewan & Warren, Peter, 2020. "UK transport decoupling: On track for clean growth in transport?," Transport Policy, Elsevier, vol. 90(C), pages 39-51.
    6. Alberto Gago & Xavier Labandeira & Xiral López Otero, 2014. "A Panorama on Energy Taxes and Green Tax Reforms," Hacienda Pública Española / Review of Public Economics, IEF, vol. 208(1), pages 145-190, March.
    7. Xinkuo Xu & Liyan Han, 2017. "Diverse Effects of Consumer Credit on Household Carbon Emissions at Quantiles: Evidence from Urban China," Sustainability, MDPI, vol. 9(9), pages 1-25, September.
    8. He, Peijun & Ng, Tsan Sheng & Su, Bin, 2019. "Energy-economic resilience with multi-region input–output linear programming models," Energy Economics, Elsevier, vol. 84(C).
    9. Chitnis, Mona & Sorrell, Steve & Druckman, Angela & Firth, Steven K. & Jackson, Tim, 2014. "Who rebounds most? Estimating direct and indirect rebound effects for different UK socioeconomic groups," Ecological Economics, Elsevier, vol. 106(C), pages 12-32.
    10. Ba, Birome Holo & Prins, Christian & Prodhon, Caroline, 2016. "Models for optimization and performance evaluation of biomass supply chains: An Operations Research perspective," Renewable Energy, Elsevier, vol. 87(P2), pages 977-989.
    11. Pottier, Antonin, 2022. "Expenditure elasticity and income elasticity of GHG emissions: A survey of literature on household carbon footprint," Ecological Economics, Elsevier, vol. 192(C).
    12. Yulei Xie & Ling Ji & Beibei Zhang & Gordon Huang, 2018. "Evolution of the Scientific Literature on Input–Output Analysis: A Bibliometric Analysis of 1990–2017," Sustainability, MDPI, vol. 10(9), pages 1-17, September.
    13. Chitnis, Mona & Sorrell, Steve, 2015. "Living up to expectations: Estimating direct and indirect rebound effects for UK households," Energy Economics, Elsevier, vol. 52(S1), pages 100-116.
    14. Pottier, Antonin & Combet, Emmanuel & Cayla, Jean-Michel & de Lauretis, Simona & Nadaud, Franck, 2021. "Who emits CO2 ? Landscape of ecological inequalities in France from a critical perspective," FEEM Working Papers 311053, Fondazione Eni Enrico Mattei (FEEM).
    15. Toka, Agorasti & Iakovou, Eleftherios & Vlachos, Dimitrios & Tsolakis, Naoum & Grigoriadou, Anastasia-Loukia, 2014. "Managing the diffusion of biomass in the residential energy sector: An illustrative real-world case study," Applied Energy, Elsevier, vol. 129(C), pages 56-69.
    16. Scott Kelly & Michael Pollitt & Doug Crawford-Brown, 2011. "Building performance evaluation and certification in the UK: a critical review of SAP?," Working Papers EPRG 1219, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    17. Tao Lin & Yunjun Yu & Xuemei Bai & Ling Feng & Jin Wang, 2013. "Greenhouse Gas Emissions Accounting of Urban Residential Consumption: A Household Survey Based Approach," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-12, February.
    18. EiÄ aitÄ—, Ovidija & Baležentis, Tomas & RibaÅ¡auskienÄ—, Erika & MorkÅ«nas, Mangirdas & MelnikienÄ—, Rasa & Å treimikienÄ—, Dalia, 2022. "Food waste in the retail sector: A survey-based evidence from Central and Eastern Europe," Journal of Retailing and Consumer Services, Elsevier, vol. 69(C).
    19. Chen, Changhua & Luo, Yuqing & Zou, Hong & Huang, Junbing, 2023. "Understanding the driving factors and finding the pathway to mitigating carbon emissions in China's Yangtze River Delta region," Energy, Elsevier, vol. 278(PB).
    20. Yuling Sun & Junsong Jia & Min Ju & Chundi Chen, 2022. "Spatiotemporal Dynamics of Direct Carbon Emission and Policy Implication of Energy Transition for China’s Residential Consumption Sector by the Methods of Social Network Analysis and Geographically We," Land, MDPI, vol. 11(7), pages 1-26, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:119:y:2017:i:c:p:4-11. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.