IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v211y2019icp237-250.html
   My bibliography  Save this article

Supply chain competition on shelf space and pricing for soft drinks: A bilevel optimization approach

Author

Listed:
  • Reisi, Mohsen
  • Gabriel, Steven A.
  • Fahimnia, Behnam

Abstract

We develop a bilevel optimization model with two manufacturers at the top level and a common retailer at the bottom level to analyze the merits of integrated vs. non-integrated supply chains. The resulting model is an instance of an equilibrium problem with equilibrium constraints (EPEC), a notoriously computationally challenging model to solve. We provide a closed-form expression for the approximate solution to the lower-level problem determining the retail prices and the allocated shelf spaces. This solution then is incorporated into the manufacturers' profit resulting in a single-level optimization problem which is easier to solve. Numerical results from a real soft drink supply chain involving two beverage suppliers selling their major products through a common retailer shows the applicability of the proposed model for supply chain planning. We then analyze the integrated model where the manufacturers and the retailer work together to maximise profit without any competition between the manufacturers. Comparing the profits in the integrated and non-integrated supply chains finds that centralization benefits all of the players if the two brands are almost identical, but it hurts the weaker brand if the two brands exhibit different characteristics in terms of costs or brand loyalty. In addition, we run several sensitivity analyses with regard to variations in the exogenous parameters including the price and shelf-space elasticities and explore the changes in the profits in both non-integrated and integrated supply chains.

Suggested Citation

  • Reisi, Mohsen & Gabriel, Steven A. & Fahimnia, Behnam, 2019. "Supply chain competition on shelf space and pricing for soft drinks: A bilevel optimization approach," International Journal of Production Economics, Elsevier, vol. 211(C), pages 237-250.
  • Handle: RePEc:eee:proeco:v:211:y:2019:i:c:p:237-250
    DOI: 10.1016/j.ijpe.2018.12.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527318304961
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2018.12.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Steven A. Gabriel & Antonio J. Conejo & J. David Fuller & Benjamin F. Hobbs & Carlos Ruiz, 2013. "Complementarity Modeling in Energy Markets," International Series in Operations Research and Management Science, Springer, edition 127, number 978-1-4419-6123-5, September.
    2. Yang, Ming-Hsien, 2001. "An efficient algorithm to allocate shelf space," European Journal of Operational Research, Elsevier, vol. 131(1), pages 107-118, May.
    3. Alain Bultez & Philippe Naert, 1988. "SH.A.R.P.: Shelf Allocation for Retailers' Profit," Marketing Science, INFORMS, vol. 7(3), pages 211-231.
    4. Yunzeng Wang & Yigal Gerchak, 2001. "Supply Chain Coordination when Demand Is Shelf-Space Dependent," Manufacturing & Service Operations Management, INFORMS, vol. 3(1), pages 82-87, August.
    5. Evan E. Anderson & Henry N. Amato, 1974. "A Mathematical Model for Simultaneously Determining the Optimal Brand-Collection and Display-Area Allocation," Operations Research, INFORMS, vol. 22(1), pages 13-21, February.
    6. Marcel Corstjens & Peter Doyle, 1981. "A Model for Optimizing Retail Space Allocations," Management Science, INFORMS, vol. 27(7), pages 822-833, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Syed Asif Raza, 2022. "A bibliometric analysis of pricing models in supply chain," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 21(2), pages 228-251, April.
    2. Ivan Eryganov & Radovan Šomplák & Dušan Hrabec & Josef Jadrný, 2023. "Bilevel programming methods in waste-to-energy plants' price-setting game," Operational Research, Springer, vol. 23(2), pages 1-37, June.
    3. Mishra, Rajat & Rasheed, Abdul A. & Yasar, Mahmut & Napier, Randy & Nakkas, Alper, 2021. "Inventory positions in US manufacturing: A competitive dynamics approach," International Journal of Production Economics, Elsevier, vol. 238(C).
    4. Kim, Gwang & Moon, Ilkyeong, 2021. "Integrated planning for product selection, shelf-space allocation, and replenishment decision with elasticity and positioning effects," Journal of Retailing and Consumer Services, Elsevier, vol. 58(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arvind Shroff & Bhavin J. Shah & Hasmukh Gajjar, 2021. "Shelf space allocation game with private brands: a profit-sharing perspective," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 20(2), pages 116-133, April.
    2. Bianchi-Aguiar, Teresa & Hübner, Alexander & Carravilla, Maria Antónia & Oliveira, José Fernando, 2021. "Retail shelf space planning problems: A comprehensive review and classification framework," European Journal of Operational Research, Elsevier, vol. 289(1), pages 1-16.
    3. Abbott, Harish & Palekar, Udatta S., 2008. "Retail replenishment models with display-space elastic demand," European Journal of Operational Research, Elsevier, vol. 186(2), pages 586-607, April.
    4. Ge, Jiwen & Honhon, Dorothee & Fransoo, Jan C. & Zhao, Lei, 2020. "Manufacturer competition in the nanostore retail channel," European Journal of Operational Research, Elsevier, vol. 286(1), pages 360-374.
    5. Hasmukh Gajjar & Gajendra Adil, 2010. "A piecewise linearization for retail shelf space allocation problem and a local search heuristic," Annals of Operations Research, Springer, vol. 179(1), pages 149-167, September.
    6. Hansen, Jared M. & Raut, Sumit & Swami, Sanjeev, 2010. "Retail Shelf Allocation: A Comparative Analysis of Heuristic and Meta-Heuristic Approaches," Journal of Retailing, Elsevier, vol. 86(1), pages 94-105.
    7. Amrouche, Nawel & Zaccour, Georges, 2007. "Shelf-space allocation of national and private brands," European Journal of Operational Research, Elsevier, vol. 180(2), pages 648-663, July.
    8. Robert Russell & Timothy Urban, 2010. "The location and allocation of products and product families on retail shelves," Annals of Operations Research, Springer, vol. 179(1), pages 131-147, September.
    9. Stelios Tsafarakis & Charalampos Saridakis & Nikolaos Matsatsinis & George Baltas, 2016. "Private labels and retail assortment planning: a differential evolution approach," Annals of Operations Research, Springer, vol. 247(2), pages 677-692, December.
    10. Andrew Lim & Brian Rodrigues & Xingwen Zhang, 2004. "Metaheuristics with Local Search Techniques for Retail Shelf-Space Optimization," Management Science, INFORMS, vol. 50(1), pages 117-131, January.
    11. Murray, Chase C. & Talukdar, Debabrata & Gosavi, Abhijit, 2010. "Joint Optimization of Product Price, Display Orientation and Shelf-Space Allocation in Retail Category Management," Journal of Retailing, Elsevier, vol. 86(2), pages 125-136.
    12. Xiaoning Luo & Yanmin Jiang & Qiying Hu, 2010. "Supply chain coordination with shelf‐space and retail price dependent demand and heterogeneous retailers," Naval Research Logistics (NRL), John Wiley & Sons, vol. 57(8), pages 673-685, December.
    13. Ketzenberg, Michael & Metters, Richard & Vargas, Vicente, 2002. "Quantifying the benefits of breaking bulk in retail operations," International Journal of Production Economics, Elsevier, vol. 80(3), pages 249-263, December.
    14. J Irion & J-C Lu & F A Al-Khayyal & Y-C Tsao, 2011. "A hierarchical decomposition approach to retail shelf space management and assortment decisions," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(10), pages 1861-1870, October.
    15. Irion, Jens & Lu, Jye-Chyi & Al-Khayyal, Faiz & Tsao, Yu-Chung, 2012. "A piecewise linearization framework for retail shelf space management models," European Journal of Operational Research, Elsevier, vol. 222(1), pages 122-136.
    16. Anantaram Balakrishnan & Michael S. Pangburn & Euthemia Stavrulaki, 2004. ""Stack Them High, Let 'em Fly": Lot-Sizing Policies When Inventories Stimulate Demand," Management Science, INFORMS, vol. 50(5), pages 630-644, May.
    17. Erjen van Nierop & Dennis Fok & Philip Hans Franses, 2008. "Interaction Between Shelf Layout and Marketing Effectiveness and Its Impact on Optimizing Shelf Arrangements," Marketing Science, INFORMS, vol. 27(6), pages 1065-1082, 11-12.
    18. Hwang, Hark & Choi, Bum & Lee, Min-Jin, 2005. "A model for shelf space allocation and inventory control considering location and inventory level effects on demand," International Journal of Production Economics, Elsevier, vol. 97(2), pages 185-195, August.
    19. Anantaram Balakrishnan & Michael S. Pangburn & Euthemia Stavrulaki, 2008. "Integrating the Promotional and Service Roles of Retail Inventories," Manufacturing & Service Operations Management, INFORMS, vol. 10(2), pages 218-235, July.
    20. Kim, Gwang & Moon, Ilkyeong, 2021. "Integrated planning for product selection, shelf-space allocation, and replenishment decision with elasticity and positioning effects," Journal of Retailing and Consumer Services, Elsevier, vol. 58(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:211:y:2019:i:c:p:237-250. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.