IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v202y2018icp69-80.html
   My bibliography  Save this article

Cutting fuel consumption of truckload carriers by using new enhanced refueling policies

Author

Listed:
  • Suzuki, Yoshinori
  • Lan, Bo

Abstract

This study proposes a new fuel-saving approach for the U.S. truckload (TL) industry from the operations-research perspective. Our approach is inspired by the idea given by multiple industry experts that, when trucks are heavy, their fuel consumption rates are notably worse in uphill and congested segments than in other segments, so that trucks should avoid buying large amounts of fuel before entering uphill and/or congested segments. We show both theoretically and numerically that our approach requires lower fuel consumption than other (existing) approaches to move a truck in a given (fixed) origin-destination route. Although, at a glance, the savings given by the proposed approach might seem small, it may actually save noticeable amount of carbon dioxide (CO2) emissions and fuel cost for the U.S. TL industry, if implemented properly.

Suggested Citation

  • Suzuki, Yoshinori & Lan, Bo, 2018. "Cutting fuel consumption of truckload carriers by using new enhanced refueling policies," International Journal of Production Economics, Elsevier, vol. 202(C), pages 69-80.
  • Handle: RePEc:eee:proeco:v:202:y:2018:i:c:p:69-80
    DOI: 10.1016/j.ijpe.2018.05.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527318302019
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2018.05.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bektas, Tolga & Laporte, Gilbert, 2011. "The Pollution-Routing Problem," Transportation Research Part B: Methodological, Elsevier, vol. 45(8), pages 1232-1250, September.
    2. Tiwari, Anurag & Chang, Pei-Chann, 2015. "A block recombination approach to solve green vehicle routing problem," International Journal of Production Economics, Elsevier, vol. 164(C), pages 379-387.
    3. Demir, Emrah & Bektaş, Tolga & Laporte, Gilbert, 2014. "A review of recent research on green road freight transportation," European Journal of Operational Research, Elsevier, vol. 237(3), pages 775-793.
    4. Barth, Matthew & Younglove, Theodore & Scora, George, 2005. "Development of a Heavy-Duty Diesel Modal Emissions and Fuel Consumption Model," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt67f0v3zf, Institute of Transportation Studies, UC Berkeley.
    5. Demir, Emrah & Bektaş, Tolga & Laporte, Gilbert, 2014. "The bi-objective Pollution-Routing Problem," European Journal of Operational Research, Elsevier, vol. 232(3), pages 464-478.
    6. Yoshinori Suzuki, 2008. "A generic model of motor‐carrier fuel optimization," Naval Research Logistics (NRL), John Wiley & Sons, vol. 55(8), pages 737-746, December.
    7. Omar Besbes & Sergei Savin, 2009. "Going Bunkers: The Joint Route Selection and Refueling Problem," Manufacturing & Service Operations Management, INFORMS, vol. 11(4), pages 694-711, February.
    8. Nourbakhsh, Seyed Mohammad & Ouyang, Yanfeng, 2010. "Optimal fueling strategies for locomotive fleets in railroad networks," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 1104-1114, September.
    9. John S. Stroup & Richard D. Wollmer, 1992. "A Fuel Management Model for the Airline Industry," Operations Research, INFORMS, vol. 40(2), pages 229-237, April.
    10. Konur, Dinçer, 2014. "Carbon constrained integrated inventory control and truckload transportation with heterogeneous freight trucks," International Journal of Production Economics, Elsevier, vol. 153(C), pages 268-279.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammad Asghari & Seyed Mohammad Javad Mirzapour Al-E-Hashem, 2021. "Green vehicle routing problem: A state-of-the-art review," Post-Print hal-03182944, HAL.
    2. Ji, Shaobo & Chen, Qiulin & Shu, Minglei & Tian, Guohong & Liao, Baoliang & Lv, Chengju & Li, Meng & Lan, Xin & Cheng, Yong, 2020. "Influence of operation management on fuel consumption of coach fleet," Energy, Elsevier, vol. 203(C).
    3. Asghari, Mohammad & Mirzapour Al-e-hashem, S. Mohammad J., 2021. "Green vehicle routing problem: A state-of-the-art review," International Journal of Production Economics, Elsevier, vol. 231(C).
    4. Neves-Moreira, Fábio & Amorim-Lopes, Mário & Amorim, Pedro, 2020. "The multi-period vehicle routing problem with refueling decisions: Traveling further to decrease fuel cost?," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    5. Schulz, Arne & Suzuki, Yoshinori, 2023. "An efficient heuristic for the fixed-route vehicle-refueling problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 169(C).
    6. Macrina, Giusy & Laporte, Gilbert & Guerriero, Francesca & Di Puglia Pugliese, Luigi, 2019. "An energy-efficient green-vehicle routing problem with mixed vehicle fleet, partial battery recharging and time windows," European Journal of Operational Research, Elsevier, vol. 276(3), pages 971-982.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Asghari, Mohammad & Mirzapour Al-e-hashem, S. Mohammad J., 2021. "Green vehicle routing problem: A state-of-the-art review," International Journal of Production Economics, Elsevier, vol. 231(C).
    2. Mohammad Asghari & Seyed Mohammad Javad Mirzapour Al-E-Hashem, 2021. "Green vehicle routing problem: A state-of-the-art review," Post-Print hal-03182944, HAL.
    3. Yu, Yang & Wu, Yuting & Wang, Junwei, 2019. "Bi-objective green ride-sharing problem: Model and exact method," International Journal of Production Economics, Elsevier, vol. 208(C), pages 472-482.
    4. Dukkanci, Okan & Karsu, Özlem & Kara, Bahar Y., 2022. "Planning sustainable routes: Economic, environmental and welfare concerns," European Journal of Operational Research, Elsevier, vol. 301(1), pages 110-123.
    5. Kramer, Raphael & Subramanian, Anand & Vidal, Thibaut & Cabral, Lucídio dos Anjos F., 2015. "A matheuristic approach for the Pollution-Routing Problem," European Journal of Operational Research, Elsevier, vol. 243(2), pages 523-539.
    6. Brunner, Carlos & Giesen, Ricardo & Klapp, Mathias A. & Flórez-Calderón, Luz, 2021. "Vehicle routing problem with steep roads," Transportation Research Part A: Policy and Practice, Elsevier, vol. 151(C), pages 1-17.
    7. Xiao, Yiyong & Konak, Abdullah, 2016. "The heterogeneous green vehicle routing and scheduling problem with time-varying traffic congestion," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 88(C), pages 146-166.
    8. Koç, Çağrı & Bektaş, Tolga & Jabali, Ola & Laporte, Gilbert, 2016. "The impact of depot location, fleet composition and routing on emissions in city logistics," Transportation Research Part B: Methodological, Elsevier, vol. 84(C), pages 81-102.
    9. Shoufeng Ji & Qi Sun, 2017. "Low-Carbon Planning and Design in B&R Logistics Service: A Case Study of an E-Commerce Big Data Platform in China," Sustainability, MDPI, vol. 9(11), pages 1-27, November.
    10. Micheli, Guido J.L. & Mantella, Fabio, 2018. "Modelling an environmentally-extended inventory routing problem with demand uncertainty and a heterogeneous fleet under carbon control policies," International Journal of Production Economics, Elsevier, vol. 204(C), pages 316-327.
    11. Emna Marrekchi & Walid Besbes & Diala Dhouib & Emrah Demir, 2021. "A review of recent advances in the operations research literature on the green routing problem and its variants," Annals of Operations Research, Springer, vol. 304(1), pages 529-574, September.
    12. Koç, Çağrı & Bektaş, Tolga & Jabali, Ola & Laporte, Gilbert, 2014. "The fleet size and mix pollution-routing problem," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 239-254.
    13. Qiu, Rui & Xu, Jiuping & Ke, Ruimin & Zeng, Ziqiang & Wang, Yinhai, 2020. "Carbon pricing initiatives-based bi-level pollution routing problem," European Journal of Operational Research, Elsevier, vol. 286(1), pages 203-217.
    14. Huang, Yixiao & Zhao, Lei & Van Woensel, Tom & Gross, Jean-Philippe, 2017. "Time-dependent vehicle routing problem with path flexibility," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 169-195.
    15. Zhang, Shuai & Gajpal, Yuvraj & Appadoo, S.S. & Abdulkader, M.M.S., 2018. "Electric vehicle routing problem with recharging stations for minimizing energy consumption," International Journal of Production Economics, Elsevier, vol. 203(C), pages 404-413.
    16. Soysal, Mehmet & Bloemhof-Ruwaard, Jacqueline M. & Bektaş, Tolga, 2015. "The time-dependent two-echelon capacitated vehicle routing problem with environmental considerations," International Journal of Production Economics, Elsevier, vol. 164(C), pages 366-378.
    17. Bektaş, Tolga & Ehmke, Jan Fabian & Psaraftis, Harilaos N. & Puchinger, Jakob, 2019. "The role of operational research in green freight transportation," European Journal of Operational Research, Elsevier, vol. 274(3), pages 807-823.
    18. Xiao, Yiyong & Zuo, Xiaorong & Huang, Jiaoying & Konak, Abdullah & Xu, Yuchun, 2020. "The continuous pollution routing problem," Applied Mathematics and Computation, Elsevier, vol. 387(C).
    19. Ehmke, Jan Fabian & Campbell, Ann M. & Thomas, Barrett W., 2018. "Optimizing for total costs in vehicle routing in urban areas," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 116(C), pages 242-265.
    20. Suzuki, Yoshinori, 2016. "A dual-objective metaheuristic approach to solve practical pollution routing problem," International Journal of Production Economics, Elsevier, vol. 176(C), pages 143-153.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:202:y:2018:i:c:p:69-80. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.