IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v198y2018icp1-10.html
   My bibliography  Save this article

Will aging voting machines cause more voters to experience long waits?

Author

Listed:
  • Kumar, Sameer
  • Yang, Muer
  • Goldschmidt, Kyle H.

Abstract

As the majority of voting machines in use today approach or exceed their expected lifetime, an increased number of voting machine failures are expected in upcoming elections. This study examines and quantifies the impact of less reliable voting machines, due to age, on the number of voters waiting longer than 30-min. G/G/s queue approximation and discrete event simulation are used in the analysis. Results show that if reliability measures — mean time between failures, mean time to repair, and availability — are within certain interval ranges, no additional voting machines are needed to ensure that no more than 5% of voters wait for longer than 30 min. However, significantly more voters would have long waits if the reliability of voting machines is poor. Accordingly, less reliable voting machines do not necessarily cause more voters to experience long waits. The proposed closed-form approximation formula and the simulation model are practical tools for election officials to evaluate the impact of less reliable voting machines on voting lines.

Suggested Citation

  • Kumar, Sameer & Yang, Muer & Goldschmidt, Kyle H., 2018. "Will aging voting machines cause more voters to experience long waits?," International Journal of Production Economics, Elsevier, vol. 198(C), pages 1-10.
  • Handle: RePEc:eee:proeco:v:198:y:2018:i:c:p:1-10
    DOI: 10.1016/j.ijpe.2018.01.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527318300574
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2018.01.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Muer & Wang, Xinfang (Jocelyn) & Xu, Nuo, 2015. "A robust voting machine allocation model to reduce extreme waiting," Omega, Elsevier, vol. 57(PB), pages 230-237.
    2. Joseph Abate & Gagan L. Choudhury & Ward Whitt, 1995. "Exponential Approximations for Tail Probabilities in Queues, I: Waiting Times," Operations Research, INFORMS, vol. 43(5), pages 885-901, October.
    3. Muer Yang & Theodore Allen & Michael Fry & W. Kelton, 2013. "The call for equity: simulation optimization models to minimize the range of waiting times," IISE Transactions, Taylor & Francis Journals, vol. 45(7), pages 781-795.
    4. Gharbi, A. & Kenne, J.-P. & Beit, M., 2007. "Optimal safety stocks and preventive maintenance periods in unreliable manufacturing systems," International Journal of Production Economics, Elsevier, vol. 107(2), pages 422-434, June.
    5. Xinfang (Jocelyn) Wang & Muer Yang & Michael J Fry, 2015. "Efficiency and equity tradeoffs in voting machine allocation problems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 66(8), pages 1363-1369, August.
    6. Dehayem Nodem, F.I. & Kenné, J.P. & Gharbi, A., 2011. "Simultaneous control of production, repair/replacement and preventive maintenance of deteriorating manufacturing systems," International Journal of Production Economics, Elsevier, vol. 134(1), pages 271-282, November.
    7. Kennedy, W. J. & Wayne Patterson, J. & Fredendall, Lawrence D., 2002. "An overview of recent literature on spare parts inventories," International Journal of Production Economics, Elsevier, vol. 76(2), pages 201-215, March.
    8. Muer Yang & Michael J. Fry & W. David Kelton & Theodore T. Allen, 2014. "Improving Voting Systems through Service-Operations Management," Production and Operations Management, Production and Operations Management Society, vol. 23(7), pages 1083-1097, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schmidt, Adam & Albert, Laura A., 2022. "Designing pandemic-resilient voting systems," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
    2. Gössinger, Ralf & Helmke, Hanna & Kaluzny, Michael, 2017. "Condition-based release of maintenance jobs in a decentralised production-maintenance system – An analysis of alternative stochastic approaches," International Journal of Production Economics, Elsevier, vol. 193(C), pages 528-537.
    3. Yang, Muer & Wang, Xinfang (Jocelyn) & Xu, Nuo, 2015. "A robust voting machine allocation model to reduce extreme waiting," Omega, Elsevier, vol. 57(PB), pages 230-237.
    4. Ba, Kader & Dellagi, Sofiene & Rezg, Nidhal & Erray, Walid, 2016. "Joint optimization of preventive maintenance and spare parts inventory for an optimal production plan with consideration of CO2 emission," Reliability Engineering and System Safety, Elsevier, vol. 149(C), pages 172-186.
    5. Thomas W. Lucas & W. David Kelton & Paul J. Sánchez & Susan M. Sanchez & Ben L. Anderson, 2015. "Changing the paradigm: Simulation, now a method of first resort," Naval Research Logistics (NRL), John Wiley & Sons, vol. 62(4), pages 293-303, June.
    6. Song Jiu, 2021. "A two-phase approach for integrating preventive maintenance with production and delivery in an unreliable coal mine," Journal of Heuristics, Springer, vol. 27(6), pages 991-1020, December.
    7. Wakiru, James M. & Pintelon, Liliane & Muchiri, Peter N. & Chemweno, Peter K., 2019. "A simulation-based optimization approach evaluating maintenance and spare parts demand interaction effects," International Journal of Production Economics, Elsevier, vol. 208(C), pages 329-342.
    8. Hashemi, M. & Asadi, M. & Zarezadeh, S., 2020. "Optimal maintenance policies for coherent systems with multi-type components," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    9. Dimitris Bertsimas & Ioannis Ch. Paschalidis, 2001. "Probabilistic Service Level Guarantees in Make-to-Stock Manufacturing Systems," Operations Research, INFORMS, vol. 49(1), pages 119-133, February.
    10. Dombi, József & Jónás, Tamás & Tóth, Zsuzsanna Eszter, 2018. "Modeling and long-term forecasting demand in spare parts logistics businesses," International Journal of Production Economics, Elsevier, vol. 201(C), pages 1-17.
    11. Karsu, Özlem & Morton, Alec, 2015. "Inequity averse optimization in operational research," European Journal of Operational Research, Elsevier, vol. 245(2), pages 343-359.
    12. Juha Lukkarinen & Jukka Majava, 2020. "Supplies Inventory Management in a Corporation Context: A Case Study," International Journal of Management, Knowledge and Learning, International School for Social and Business Studies, Celje, Slovenia, vol. 9(2), pages 169-184.
    13. Van der Auweraer, Sarah & Boute, Robert N. & Syntetos, Aris A., 2019. "Forecasting spare part demand with installed base information: A review," International Journal of Forecasting, Elsevier, vol. 35(1), pages 181-196.
    14. Vliegen, I.M.H. & van Houtum, G.J., 2009. "Approximate evaluation of order fill rates for an inventory system of service tools," International Journal of Production Economics, Elsevier, vol. 118(1), pages 339-351, March.
    15. Gérard P. Cachon & Dawson Kaaua, 2022. "Serving Democracy: Evidence of Voting Resource Disparity in Florida," Management Science, INFORMS, vol. 68(9), pages 6687-6696, September.
    16. Dehayem Nodem, F.I. & Kenné, J.P. & Gharbi, A., 2011. "Simultaneous control of production, repair/replacement and preventive maintenance of deteriorating manufacturing systems," International Journal of Production Economics, Elsevier, vol. 134(1), pages 271-282, November.
    17. Behnamfar, Reza & Sajadi, Seyed Mojtaba & Tootoonchy, Mahshid, 2022. "Developing environmental hedging point policy with variable demand: A machine learning approach," International Journal of Production Economics, Elsevier, vol. 254(C).
    18. Xian Zhao & Jing Zhang & Xiaoyue Wang, 2019. "Joint optimization of components redundancy, spares inventory and repairmen allocation for a standby series system," Journal of Risk and Reliability, , vol. 233(4), pages 623-638, August.
    19. Kleber, Rainer & Zanoni, Simone & Zavanella, Lucio, 2011. "On how buyback and remanufacturing strategies affect the profitability of spare parts supply chains," International Journal of Production Economics, Elsevier, vol. 133(1), pages 135-142, September.
    20. Liu, Xinbao & Yang, Tianji & Pei, Jun & Liao, Haitao & Pohl, Edward A., 2019. "Replacement and inventory control for a multi-customer product service system with decreasing replacement costs," European Journal of Operational Research, Elsevier, vol. 273(2), pages 561-574.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:198:y:2018:i:c:p:1-10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.