IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v144y2013i2p409-417.html
   My bibliography  Save this article

A vendor–buyer integrated production–inventory model with normal distribution of lead time

Author

Listed:
  • Hoque, M.A.

Abstract

By relaxing the long-term assumption of the deterministic lead time, recently three coordinated vendor–buyer models with exponential distribution of lead time in a two-stage supply chain were presented. The vendor produces a product at a finite rate and delivers the lot to the buyer with a number of equal-sized batches (sub-lots) to meet the deterministic demand. The next batch is ordered when the previous one drops to a reorder point. Shortages were allowed and completely backordered. However, in exponential distribution of lead time, the probability of arrival of a batch earlier is higher than the probability of arrival of a batch late or in the mean lead time. But usually, probability of arrival of a batch earlier or late appears to be smaller than the probability of arrival of a batch in the mean lead time. Thus normal distribution of lead time seems to be a better fit to the problem. Hence their models seem unfit to the concerned problem in practice. Based on this notion, we develop a vendor–buyer integrated production–inventory model following normal distribution of lead time but retaining their other assumptions. To make the model more realistic, set up time per set up of a machine, the highest limit on the capacity of the transport vehicle and the transportation cost and time per batch are imposed. Then we derive an optimal solution technique to the model to obtain minimum expected joint total cost that follows development of the solution algorithm. Extensive comparative studies on the results of some numerical problems are carried out to highlight the potential significance of the present method. Sensitivity analysis to the solutions with variations of some parameter values are also carried out.

Suggested Citation

  • Hoque, M.A., 2013. "A vendor–buyer integrated production–inventory model with normal distribution of lead time," International Journal of Production Economics, Elsevier, vol. 144(2), pages 409-417.
  • Handle: RePEc:eee:proeco:v:144:y:2013:i:2:p:409-417
    DOI: 10.1016/j.ijpe.2013.02.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527313000868
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2013.02.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chang, Hung-Chi & Ouyang, Liang-Yuh & Wu, Kun-Shan & Ho, Chia-Huei, 2006. "Integrated vendor-buyer cooperative inventory models with controllable lead time and ordering cost reduction," European Journal of Operational Research, Elsevier, vol. 170(2), pages 481-495, April.
    2. Rossi, Roberto & Tarim, S. Armagan & Hnich, Brahim & Prestwich, Steven, 2010. "Computing the non-stationary replenishment cycle inventory policy under stochastic supplier lead-times," International Journal of Production Economics, Elsevier, vol. 127(1), pages 180-189, September.
    3. Glock, C. H., 2012. "Lead time reduction strategies in a single-vendor-single-buyer integrated inventory model with lot size-dependent lead times and stochastic demand," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 57816, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    4. Pan, Jason Chao-Hsien & Hsiao, Yu-Cheng, 2005. "Integrated inventory models with controllable lead time and backorder discount considerations," International Journal of Production Economics, Elsevier, vol. 93(1), pages 387-397, January.
    5. Fujiwara, Okitsugu & Sedarage, Dayani, 1997. "An optimal (Q,r) policy for a multipart assembly system under stochastic part procurement lead times," European Journal of Operational Research, Elsevier, vol. 100(3), pages 550-556, August.
    6. Glock, Christoph H., 2012. "Lead time reduction strategies in a single-vendor–single-buyer integrated inventory model with lot size-dependent lead times and stochastic demand," International Journal of Production Economics, Elsevier, vol. 136(1), pages 37-44.
    7. Hoque, Mohammad A. & Goyal, Suresh K., 2006. "A heuristic solution procedure for an integrated inventory system under controllable lead-time with equal or unequal sized batch shipments between a vendor and a buyer," International Journal of Production Economics, Elsevier, vol. 102(2), pages 217-225, August.
    8. Thomas, Douglas J. & Griffin, Paul M., 1996. "Coordinated supply chain management," European Journal of Operational Research, Elsevier, vol. 94(1), pages 1-15, October.
    9. Sarmah, S.P. & Acharya, D. & Goyal, S.K., 2006. "Buyer vendor coordination models in supply chain management," European Journal of Operational Research, Elsevier, vol. 175(1), pages 1-15, November.
    10. Chandra, Pankaj & Fisher, Marshall L., 1994. "Coordination of production and distribution planning," European Journal of Operational Research, Elsevier, vol. 72(3), pages 503-517, February.
    11. Ouyang, Liang-Yuh & Wu, Kun-Shan, 1998. "A minimax distribution free procedure for mixed inventory model with variable lead time," International Journal of Production Economics, Elsevier, vol. 56(1), pages 511-516, September.
    12. Hsiao, Yu-Cheng, 2008. "A note on integrated single vendor single buyer model with stochastic demand and variable lead time," International Journal of Production Economics, Elsevier, vol. 114(1), pages 294-297, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rabin Kumar Mallick & Kartik Patra & Shyamal Kumar Mondal, 2020. "Mixture inventory model of lost sale and back-order with stochastic lead time demand on permissible delay in payments," Annals of Operations Research, Springer, vol. 292(1), pages 341-369, September.
    2. Herbon, Avi, 2021. "An integrated manufacturer-buyer chain with bounded production cycle length," Operations Research Perspectives, Elsevier, vol. 8(C).
    3. Guo Li & Mengqi Liu & Xu Guan, 2017. "Diversity of payment contracts in a decentralized assembly system," Annals of Operations Research, Springer, vol. 257(1), pages 613-639, October.
    4. Herbon, Avi, 2020. "An approximated solution to the constrained integrated manufacturer-buyer supply problem," Operations Research Perspectives, Elsevier, vol. 7(C).
    5. Jian Li & Lu Liu & Hao Hu & Qiuhong Zhao & Libin Guo, 2018. "An Inventory Model for Deteriorating Drugs with Stochastic Lead Time," IJERPH, MDPI, vol. 15(12), pages 1-20, December.
    6. Shih-Hsien Tseng & Jia-Chen Yu, 2019. "Data-Driven Iron and Steel Inventory Control Policies," Mathematics, MDPI, vol. 7(8), pages 1-15, August.
    7. M. Ganesh Kumar & R. Uthayakumar, 2019. "A two-echelon integrated inventory model under generalized lead time distribution with variable backordering rate," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(4), pages 552-562, August.
    8. Bandaly, Dia & Satir, Ahmet & Shanker, Latha, 2016. "Impact of lead time variability in supply chain risk management," International Journal of Production Economics, Elsevier, vol. 180(C), pages 88-100.
    9. Wu, Zhengping & Zhai, Xin & Liu, Zhongyi, 2015. "The inventory billboard effect on the lead-time decision," International Journal of Production Economics, Elsevier, vol. 170(PA), pages 45-53.
    10. Biswajit Sarkar & Sharmila Saren & Mitali Sarkar & Yong Won Seo, 2016. "A Stackelberg Game Approach in an Integrated Inventory Model with Carbon-Emission and Setup Cost Reduction," Sustainability, MDPI, vol. 8(12), pages 1-23, December.
    11. Noblesse, Ann M. & Boute, Robert N. & Lambrecht, Marc R. & Van Houdt, Benny, 2014. "Lot sizing and lead time decisions in production/inventory systems," International Journal of Production Economics, Elsevier, vol. 155(C), pages 351-360.
    12. Babai, M. Zied & Dai, Yong & Li, Qinyun & Syntetos, Aris & Wang, Xun, 2022. "Forecasting of lead-time demand variance: Implications for safety stock calculations," European Journal of Operational Research, Elsevier, vol. 296(3), pages 846-861.
    13. M. Vijayashree & R. Uthayakumar, 2016. "Two-echelon supply chain inventory model with controllable lead time," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 7(1), pages 112-125, December.
    14. Islam, S.M. Shahidul & Hoque, Md. Abdul & Hamzah, Norhayati, 2017. "Single-supplier single-manufacturer multi-retailer consignment policy for retailers’ generalized demand distributions," International Journal of Production Economics, Elsevier, vol. 184(C), pages 157-167.
    15. Lee, Sunghee & Kim, Daeki, 2014. "An optimal policy for a single-vendor single-buyer integrated production–distribution model with both deteriorating and defective items," International Journal of Production Economics, Elsevier, vol. 147(PA), pages 161-170.
    16. M. A. Hoque, 2021. "An optimal solution policy to an integrated manufacturer-retailers problem with normal distribution of lead times of delivering equal and unequal-sized batches," OPSEARCH, Springer;Operational Research Society of India, vol. 58(2), pages 483-512, June.
    17. Heydari, Jafar & Mahmoodi, Mansour & Taleizadeh, Ata Allah, 2016. "Lead time aggregation: A three-echelon supply chain model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 89(C), pages 215-233.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S. Sarkar & B. C. Giri, 2020. "A vendor–buyer integrated inventory system with variable lead time and uncertain market demand," Operational Research, Springer, vol. 20(1), pages 491-515, March.
    2. K. F. Mary Latha & M. Ganesh Kumar & R. Uthayakumar, 2021. "Two echelon economic lot sizing problems with geometric shipment policy backorder price discount and optimal investment to reduce ordering cost," OPSEARCH, Springer;Operational Research Society of India, vol. 58(4), pages 1133-1163, December.
    3. Glock, Christoph H., 2012. "The joint economic lot size problem: A review," International Journal of Production Economics, Elsevier, vol. 135(2), pages 671-686.
    4. Sumon Sarkar & Bibhas C. Giri, 2022. "Safety stock management in a supply chain model with waiting time and price discount dependent backlogging rate in stochastic environment," Operational Research, Springer, vol. 22(2), pages 917-946, April.
    5. Sarkar, Biswajit & Moon, Ilkyeong, 2014. "Improved quality, setup cost reduction, and variable backorder costs in an imperfect production process," International Journal of Production Economics, Elsevier, vol. 155(C), pages 204-213.
    6. M. A. Hoque, 2021. "An optimal solution policy to an integrated manufacturer-retailers problem with normal distribution of lead times of delivering equal and unequal-sized batches," OPSEARCH, Springer;Operational Research Society of India, vol. 58(2), pages 483-512, June.
    7. Bendre, Abhijit Bhagwan & Nielsen, Lars Relund, 2013. "Inventory control in a lost-sales setting with information about supply lead times," International Journal of Production Economics, Elsevier, vol. 142(2), pages 324-331.
    8. Castellano, Davide & Gallo, Mosè & Grassi, Andrea & Santillo, Liberatina C., 2019. "The effect of GHG emissions on production, inventory replenishment and routing decisions in a single vendor-multiple buyers supply chain," International Journal of Production Economics, Elsevier, vol. 218(C), pages 30-42.
    9. Heydari, Jafar, 2014. "Lead time variation control using reliable shipment equipment: An incentive scheme for supply chain coordination," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 63(C), pages 44-58.
    10. Glock, Christoph H., 2012. "Lead time reduction strategies in a single-vendor–single-buyer integrated inventory model with lot size-dependent lead times and stochastic demand," International Journal of Production Economics, Elsevier, vol. 136(1), pages 37-44.
    11. AlDurgam, Mohammad & Adegbola, Kehinde & Glock, Christoph H., 2017. "A single-vendor single-manufacturer integrated inventory model with stochastic demand and variable production rate," International Journal of Production Economics, Elsevier, vol. 191(C), pages 335-350.
    12. Li, Xiang, 2020. "Reducing channel costs by investing in smart supply chain technologies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 137(C).
    13. Mou, Qiong & Cheng, Yunlong & Liao, Huchang, 2017. "A note on “lead time reduction strategies in a single-vendor-single-buyer integrated inventory model with lot size-dependent lead times and stochastic demand”," International Journal of Production Economics, Elsevier, vol. 193(C), pages 827-831.
    14. Asif Iqbal Malik & Biswajit Sarkar, 2020. "Coordination Supply Chain Management Under Flexible Manufacturing, Stochastic Leadtime Demand, and Mixture of Inventory," Mathematics, MDPI, vol. 8(6), pages 1-32, June.
    15. Tiwari, Sunil & Kazemi, Nima & Modak, Nikunja Mohan & Cárdenas-Barrón, Leopoldo Eduardo & Sarkar, Sumon, 2020. "The effect of human errors on an integrated stochastic supply chain model with setup cost reduction and backorder price discount," International Journal of Production Economics, Elsevier, vol. 226(C).
    16. Mehmood Khan & Matloub Hussain & Leopoldo Eduardo Cárdenas-Barrón, 2017. "Learning and screening errors in an EPQ inventory model for supply chains with stochastic lead time demands," International Journal of Production Research, Taylor & Francis Journals, vol. 55(16), pages 4816-4832, August.
    17. Arshinder & Kanda, Arun & Deshmukh, S.G., 2008. "Supply chain coordination: Perspectives, empirical studies and research directions," International Journal of Production Economics, Elsevier, vol. 115(2), pages 316-335, October.
    18. Heydari, Jafar & Mahmoodi, Mansour & Taleizadeh, Ata Allah, 2016. "Lead time aggregation: A three-echelon supply chain model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 89(C), pages 215-233.
    19. M. Vijayashree & R. Uthayakumar, 2016. "Two-echelon supply chain inventory model with controllable lead time," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 7(1), pages 112-125, December.
    20. Glock, Christoph H. & Grosse, Eric H., 2021. "The impact of controllable production rates on the performance of inventory systems: A systematic review of the literature," European Journal of Operational Research, Elsevier, vol. 288(3), pages 703-720.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:144:y:2013:i:2:p:409-417. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.