IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v15y2018i12p2772-d188663.html
   My bibliography  Save this article

An Inventory Model for Deteriorating Drugs with Stochastic Lead Time

Author

Listed:
  • Jian Li

    (Research Base of Beijing Modern Manufacturing Development, College of Economics and Management, Beijing University of Technology, Beijing 100124, China)

  • Lu Liu

    (School of Economics and Management, Beihang University, Beijing 100091, China
    Beijing Key Laboratory of Emergency Support Simulation Technologies for City Operations, Beihang University, Beijing 100091, China
    Beijing International Science and Technology Cooperation Base for City Safety Operation and Emergency Support, Beihang University, Beijing 100091, China)

  • Hao Hu

    (College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China)

  • Qiuhong Zhao

    (School of Economics and Management, Beihang University, Beijing 100091, China
    Beijing Key Laboratory of Emergency Support Simulation Technologies for City Operations, Beihang University, Beijing 100091, China
    Beijing International Science and Technology Cooperation Base for City Safety Operation and Emergency Support, Beihang University, Beijing 100091, China)

  • Libin Guo

    (College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China)

Abstract

Inventory management of deteriorating drugs has attracted considerable attention recently in hospitals. Drugs are a kind of special product. Two characteristics of some drugs are the shorter shelf life and high service level. This causes hospitals a great deal of difficulty in inventory management of perishable drugs. On one hand, hospitals should increase the drug inventory to achieve a higher service level. On the other hand, hospitals should decrease the drug inventory because of the short shelf life of drugs. An effective management of pharmaceuticals is required to ensure 100% product availability at the right time, at the right cost, in good conditions to the right customers. This requires a trade-off between shelf-life and service level. In addition, many uncontrollable factors can lead to random lead time of drugs. This paper focuses on deteriorating drugs with stochastic lead time. We have established a stochastic lead time inventory model for deteriorating drugs with fixed demand. The lead time obeyed a certain distribution function and shortages were allowed. This model also considered constraints on service level, stock space and drug shelf life. Through the analysis of the model, the shelf life of drugs and service level were weighted in different lead time distributions. Empirical analysis and sensitivity analysis were given to get reach important conclusions and enlightenment.

Suggested Citation

  • Jian Li & Lu Liu & Hao Hu & Qiuhong Zhao & Libin Guo, 2018. "An Inventory Model for Deteriorating Drugs with Stochastic Lead Time," IJERPH, MDPI, vol. 15(12), pages 1-20, December.
  • Handle: RePEc:gam:jijerp:v:15:y:2018:i:12:p:2772-:d:188663
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/15/12/2772/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/15/12/2772/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Haijema, René, 2013. "A new class of stock-level dependent ordering policies for perishables with a short maximum shelf life," International Journal of Production Economics, Elsevier, vol. 143(2), pages 434-439.
    2. Shibuya, Takeshi & Dohi, Tadashi & Osaki, Shunji, 1998. "Optimal continuous review policies for spare part provisioning with random lead times," International Journal of Production Economics, Elsevier, vol. 55(3), pages 257-271, August.
    3. Elisa Barbieri & Manli Huang & Shenglei Pi & Mattia Tassinari, 2017. "Restructuring the Production of Medicines: An Investigation on the Pharmaceutical Sector in China and the Role of Mergers and Acquisitions," IJERPH, MDPI, vol. 14(10), pages 1-21, October.
    4. Disney, Stephen M. & Maltz, Arnold & Wang, Xun & Warburton, Roger D.H., 2016. "Inventory management for stochastic lead times with order crossovers," European Journal of Operational Research, Elsevier, vol. 248(2), pages 473-486.
    5. Hoque, M.A., 2013. "A vendor–buyer integrated production–inventory model with normal distribution of lead time," International Journal of Production Economics, Elsevier, vol. 144(2), pages 409-417.
    6. Muriana, Cinzia, 2016. "An EOQ model for perishable products with fixed shelf life under stochastic demand conditions," European Journal of Operational Research, Elsevier, vol. 255(2), pages 388-396.
    7. Saedi, Samira & Kundakcioglu, O. Erhun & Henry, Andrea C., 2016. "Mitigating the impact of drug shortages for a healthcare facility: An inventory management approach," European Journal of Operational Research, Elsevier, vol. 251(1), pages 107-123.
    8. Kouki, Chaaben & Jemaï, Zied & Minner, Stefan, 2015. "A lost sales (r, Q) inventory control model for perishables with fixed lifetime and lead time," International Journal of Production Economics, Elsevier, vol. 168(C), pages 143-157.
    9. Heydari, Jafar, 2014. "Lead time variation control using reliable shipment equipment: An incentive scheme for supply chain coordination," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 63(C), pages 44-58.
    10. Yan, Changyuan & Liao, Yi & Banerjee, Avijit, 2013. "Multi-product lot scheduling with backordering and shelf-life constraints," Omega, Elsevier, vol. 41(3), pages 510-516.
    11. Jen-Hung Tseng & Yen-Chih Liao & Bin Chong & Shih-wei Liao, 2018. "Governance on the Drug Supply Chain via Gcoin Blockchain," IJERPH, MDPI, vol. 15(6), pages 1-8, May.
    12. Heydari, Jafar & Mahmoodi, Mansour & Taleizadeh, Ata Allah, 2016. "Lead time aggregation: A three-echelon supply chain model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 89(C), pages 215-233.
    13. Louly, Mohamed-Aly & Dolgui, Alexandre, 2013. "Optimal MRP parameters for a single item inventory with random replenishment lead time, POQ policy and service level constraint," International Journal of Production Economics, Elsevier, vol. 143(1), pages 35-40.
    14. Das, Rubel & Hanaoka, Shinya, 2014. "Relief inventory modelling with stochastic lead-time and demand," European Journal of Operational Research, Elsevier, vol. 235(3), pages 616-623.
    15. Hariga, Moncer & Ben-Daya, Mohamed, 1999. "Some stochastic inventory models with deterministic variable lead time," European Journal of Operational Research, Elsevier, vol. 113(1), pages 42-51, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bandaly, Dia & Satir, Ahmet & Shanker, Latha, 2016. "Impact of lead time variability in supply chain risk management," International Journal of Production Economics, Elsevier, vol. 180(C), pages 88-100.
    2. Janssen, Larissa & Claus, Thorsten & Sauer, Jürgen, 2016. "Literature review of deteriorating inventory models by key topics from 2012 to 2015," International Journal of Production Economics, Elsevier, vol. 182(C), pages 86-112.
    3. Heydari, Jafar & Mahmoodi, Mansour & Taleizadeh, Ata Allah, 2016. "Lead time aggregation: A three-echelon supply chain model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 89(C), pages 215-233.
    4. Ben-Ammar, Oussama & Bettayeb, Belgacem & Dolgui, Alexandre, 2019. "Optimization of multi-period supply planning under stochastic lead times and a dynamic demand," International Journal of Production Economics, Elsevier, vol. 218(C), pages 106-117.
    5. Wu, Zhengping & Zhai, Xin & Liu, Zhongyi, 2015. "The inventory billboard effect on the lead-time decision," International Journal of Production Economics, Elsevier, vol. 170(PA), pages 45-53.
    6. Noblesse, Ann M. & Boute, Robert N. & Lambrecht, Marc R. & Van Houdt, Benny, 2014. "Lot sizing and lead time decisions in production/inventory systems," International Journal of Production Economics, Elsevier, vol. 155(C), pages 351-360.
    7. Gaukler, Gary & Ketzenberg, Michael & Salin, Victoria, 2017. "Establishing dynamic expiration dates for perishables: An application of rfid and sensor technology," International Journal of Production Economics, Elsevier, vol. 193(C), pages 617-632.
    8. Asif Iqbal Malik & Biswajit Sarkar, 2020. "Coordination Supply Chain Management Under Flexible Manufacturing, Stochastic Leadtime Demand, and Mixture of Inventory," Mathematics, MDPI, vol. 8(6), pages 1-32, June.
    9. M. A. Hoque, 2021. "An optimal solution policy to an integrated manufacturer-retailers problem with normal distribution of lead times of delivering equal and unequal-sized batches," OPSEARCH, Springer;Operational Research Society of India, vol. 58(2), pages 483-512, June.
    10. Ponte, Borja & Costas, José & Puche, Julio & Pino, Raúl & de la Fuente, David, 2018. "The value of lead time reduction and stabilization: A comparison between traditional and collaborative supply chains," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 111(C), pages 165-185.
    11. M. Vijayashree & R. Uthayakumar, 2016. "Two-echelon supply chain inventory model with controllable lead time," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 7(1), pages 112-125, December.
    12. Babai, M. Zied & Dai, Yong & Li, Qinyun & Syntetos, Aris & Wang, Xun, 2022. "Forecasting of lead-time demand variance: Implications for safety stock calculations," European Journal of Operational Research, Elsevier, vol. 296(3), pages 846-861.
    13. Hansen, Ole & Transchel, Sandra & Friedrich, Hanno, 2023. "Replenishment strategies for lost sales inventory systems of perishables under demand and lead time uncertainty," European Journal of Operational Research, Elsevier, vol. 308(2), pages 661-675.
    14. Mukunda Choudhury & Sujit Kumar De & Gour Chandra Mahata, 2023. "A pollution-sensitive multistage production-inventory model for deteriorating items considering expiration date under Stackelberg game approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(10), pages 11847-11884, October.
    15. Emre Berk & Ülkü Gürler & Saeed Poormoaied, 2020. "On the $$\varvec{(Q,r)}$$(Q,r) policy for perishables with positive lead times and multiple outstanding orders," Annals of Operations Research, Springer, vol. 284(1), pages 81-98, January.
    16. Hayya, Jack C. & Harrison, Terry P. & He, X. James, 2011. "The impact of stochastic lead time reduction on inventory cost under order crossover," European Journal of Operational Research, Elsevier, vol. 211(2), pages 274-281, June.
    17. M. Ganesh Kumar & R. Uthayakumar, 2019. "A two-echelon integrated inventory model under generalized lead time distribution with variable backordering rate," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(4), pages 552-562, August.
    18. Qiu, Ruozhen & Sun, Minghe & Lim, Yun Fong, 2017. "Optimizing (s, S) policies for multi-period inventory models with demand distribution uncertainty: Robust dynamic programing approaches," European Journal of Operational Research, Elsevier, vol. 261(3), pages 880-892.
    19. Sajjad Aslani Khiavi & Hamid Khaloozadeh & Fahimeh Soltanian, 2021. "Suboptimal sliding manifold For nonlinear supply chain with time delay," Journal of Combinatorial Optimization, Springer, vol. 42(1), pages 151-173, July.
    20. Alawneh, Fawzat & Zhang, Guoqing, 2018. "Dual-channel warehouse and inventory management with stochastic demand," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 112(C), pages 84-106.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:15:y:2018:i:12:p:2772-:d:188663. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.