IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v143y2013i2p434-439.html
   My bibliography  Save this article

A new class of stock-level dependent ordering policies for perishables with a short maximum shelf life

Author

Listed:
  • Haijema, René

Abstract

Many perishables such as fresh food and blood platelet concentrates are characterized by a short maximum shelf life. As demand is often highly uncertain the outdating and shortages figures can be very high, especially when frequent replenishment is not possible or inefficient due to fixed ordering cost. We present a new class of stock-level dependent ordering policies: the (s,S,q,Q) policy, which is a periodic review (s,S) policy with the order quantity restricted by a minimum (q) and maximum (Q). Optimal (weekday dependent) parameter values are derived by dynamic programming and simulation. The (s,S,q,Q) policy performs nearly optimal and improves the (s,S) policies in many cases by 4–25%.

Suggested Citation

  • Haijema, René, 2013. "A new class of stock-level dependent ordering policies for perishables with a short maximum shelf life," International Journal of Production Economics, Elsevier, vol. 143(2), pages 434-439.
  • Handle: RePEc:eee:proeco:v:143:y:2013:i:2:p:434-439
    DOI: 10.1016/j.ijpe.2011.05.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527311002386
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2011.05.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Steven Nahmias, 1982. "Perishable Inventory Theory: A Review," Operations Research, INFORMS, vol. 30(4), pages 680-708, August.
    2. Haijema, René & van Dijk, Nico & van der Wal, Jan & Smit Sibinga, Cees, 2009. "Blood platelet production with breaks: optimization by SDP and simulation," International Journal of Production Economics, Elsevier, vol. 121(2), pages 464-473, October.
    3. Brant E. Fries, 1975. "Optimal Ordering Policy for a Perishable Commodity with Fixed Lifetime," Operations Research, INFORMS, vol. 23(1), pages 46-61, February.
    4. Hill, Roger M. & Johansen, Soren Glud, 2006. "Optimal and near-optimal policies for lost sales inventory models with at most one replenishment order outstanding," European Journal of Operational Research, Elsevier, vol. 169(1), pages 111-132, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. De Moor, Bram J. & Gijsbrechts, Joren & Boute, Robert N., 2022. "Reward shaping to improve the performance of deep reinforcement learning in perishable inventory management," European Journal of Operational Research, Elsevier, vol. 301(2), pages 535-545.
    2. Kouki, Chaaben & Babai, M. Zied & Minner, Stefan, 2018. "On the benefit of dual-sourcing in managing perishable inventory," International Journal of Production Economics, Elsevier, vol. 204(C), pages 1-17.
    3. Janssen, Larissa & Claus, Thorsten & Sauer, Jürgen, 2016. "Literature review of deteriorating inventory models by key topics from 2012 to 2015," International Journal of Production Economics, Elsevier, vol. 182(C), pages 86-112.
    4. Dehghani, Maryam & Abbasi, Babak, 2018. "An age-based lateral-transshipment policy for perishable items," International Journal of Production Economics, Elsevier, vol. 198(C), pages 93-103.
    5. Kouki, Chaaben & Jemaï, Zied & Minner, Stefan, 2015. "A lost sales (r, Q) inventory control model for perishables with fixed lifetime and lead time," International Journal of Production Economics, Elsevier, vol. 168(C), pages 143-157.
    6. Gorria, Carlos & Lezaun, Mikel & López, F. Javier, 2022. "Performance measures of nonstationary inventory models for perishable products under the EWA policy," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1137-1150.
    7. Ketzenberg, Michael & Gaukler, Gary & Salin, Victoria, 2018. "Expiration dates and order quantities for perishables," European Journal of Operational Research, Elsevier, vol. 266(2), pages 569-584.
    8. Jian Li & Lu Liu & Hao Hu & Qiuhong Zhao & Libin Guo, 2018. "An Inventory Model for Deteriorating Drugs with Stochastic Lead Time," IJERPH, MDPI, vol. 15(12), pages 1-20, December.
    9. Hansen, Ole & Transchel, Sandra & Friedrich, Hanno, 2023. "Replenishment strategies for lost sales inventory systems of perishables under demand and lead time uncertainty," European Journal of Operational Research, Elsevier, vol. 308(2), pages 661-675.
    10. Pauls-Worm, Karin G.J. & Hendrix, Eligius M.T. & Haijema, René & van der Vorst, Jack G.A.J., 2014. "An MILP approximation for ordering perishable products with non-stationary demand and service level constraints," International Journal of Production Economics, Elsevier, vol. 157(C), pages 133-146.
    11. Soysal, Mehmet & Bloemhof-Ruwaard, Jacqueline M. & Haijema, Rene & van der Vorst, Jack G.A.J., 2015. "Modeling an Inventory Routing Problem for perishable products with environmental considerations and demand uncertainty," International Journal of Production Economics, Elsevier, vol. 164(C), pages 118-133.
    12. Haijema, René & Minner, Stefan, 2019. "Improved ordering of perishables: The value of stock-age information," International Journal of Production Economics, Elsevier, vol. 209(C), pages 316-324.
    13. Haijema, René & Minner, Stefan, 2016. "Stock-level dependent ordering of perishables: A comparison of hybrid base-stock and constant order policies," International Journal of Production Economics, Elsevier, vol. 181(PA), pages 215-225.
    14. Haijema, Rene, 2014. "Optimal ordering, issuance and disposal policies for inventory management of perishable products," International Journal of Production Economics, Elsevier, vol. 157(C), pages 158-169.
    15. Cenk Çalışkan, 2022. "A Comparison of Simple Closed-Form Solutions for the EOQ Problem for Exponentially Deteriorating Items," Sustainability, MDPI, vol. 14(14), pages 1-23, July.
    16. Tromp, Seth-Oscar & Haijema, René & Rijgersberg, Hajo & van der Vorst, Jack G.A.J., 2016. "A systematic approach to preventing chilled-food waste at the retail outlet," International Journal of Production Economics, Elsevier, vol. 182(C), pages 508-518.
    17. Umay Uzunoglu Kocer & Bahar Yalcin, 2020. "Continuous review (s, Q) inventory system with random lifetime and two demand classes," OPSEARCH, Springer;Operational Research Society of India, vol. 57(1), pages 104-118, March.
    18. Gaukler, Gary & Ketzenberg, Michael & Salin, Victoria, 2017. "Establishing dynamic expiration dates for perishables: An application of rfid and sensor technology," International Journal of Production Economics, Elsevier, vol. 193(C), pages 617-632.
    19. Kouki, Chaaben & Jouini, Oualid, 2015. "On the effect of lifetime variability on the performance of inventory systems," International Journal of Production Economics, Elsevier, vol. 167(C), pages 23-34.
    20. Janssen, Larissa & Diabat, Ali & Sauer, Jürgen & Herrmann, Frank, 2018. "A stochastic micro-periodic age-based inventory replenishment policy for perishable goods," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 445-465.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duan, Qinglin & Liao, T. Warren, 2014. "Optimization of blood supply chain with shortened shelf lives and ABO compatibility," International Journal of Production Economics, Elsevier, vol. 153(C), pages 113-129.
    2. Lowalekar, Harshal & Ravi, R. Raghavendra, 2017. "Revolutionizing blood bank inventory management using the TOC thinking process: An Indian case study," International Journal of Production Economics, Elsevier, vol. 186(C), pages 89-122.
    3. Dehghani, Maryam & Abbasi, Babak & Oliveira, Fabricio, 2021. "Proactive transshipment in the blood supply chain: A stochastic programming approach," Omega, Elsevier, vol. 98(C).
    4. Kouki, Chaaben & Jouini, Oualid, 2015. "On the effect of lifetime variability on the performance of inventory systems," International Journal of Production Economics, Elsevier, vol. 167(C), pages 23-34.
    5. Puranam, Kartikeya & Novak, David C. & Lucas, Marilyn T. & Fung, Mark, 2017. "Managing blood inventory with multiple independent sources of supply," European Journal of Operational Research, Elsevier, vol. 259(2), pages 500-511.
    6. Zahra Azadi & Harsha Gangammanavar & Sandra Eksioglu, 2020. "Developing childhood vaccine administration and inventory replenishment policies that minimize open vial wastage," Annals of Operations Research, Springer, vol. 292(1), pages 215-247, September.
    7. Chen, Jing & Dong, Ming & Xu, Lei, 2018. "A perishable product shipment consolidation model considering freshness-keeping effort," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 115(C), pages 56-86.
    8. Gunpinar, Serkan & Centeno, Grisselle, 2016. "An integer programming approach to the bloodmobile routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 86(C), pages 94-115.
    9. Ketzenberg, Michael & Oliva, Rogelio & Wang, Yimin & Webster, Scott, 2023. "Retailer inventory data sharing in a fresh product supply chain," European Journal of Operational Research, Elsevier, vol. 307(2), pages 680-693.
    10. Janssen, Larissa & Diabat, Ali & Sauer, Jürgen & Herrmann, Frank, 2018. "A stochastic micro-periodic age-based inventory replenishment policy for perishable goods," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 445-465.
    11. Li‐Ming Chen & Amar Sapra, 2013. "Joint inventory and pricing decisions for perishable products with two‐period lifetime," Naval Research Logistics (NRL), John Wiley & Sons, vol. 60(5), pages 343-366, August.
    12. Duan, Qinglin & Liao, T. Warren, 2013. "A new age-based replenishment policy for supply chain inventory optimization of highly perishable products," International Journal of Production Economics, Elsevier, vol. 145(2), pages 658-671.
    13. Hwang, Hark & Hahn, Kyu Hun, 2000. "An optimal procurement policy for items with an inventory level-dependent demand rate and fixed lifetime," European Journal of Operational Research, Elsevier, vol. 127(3), pages 537-545, December.
    14. Lian, Zhaotong & Liu, Xiaoming & Zhao, Ning, 2009. "A perishable inventory model with Markovian renewal demands," International Journal of Production Economics, Elsevier, vol. 121(1), pages 176-182, September.
    15. Haijema, René & Minner, Stefan, 2019. "Improved ordering of perishables: The value of stock-age information," International Journal of Production Economics, Elsevier, vol. 209(C), pages 316-324.
    16. Li‐Ming Chen & Amar Sapra, 2021. "Inventory renewal for a perishable product: Economies of scale and age‐dependent demand," Naval Research Logistics (NRL), John Wiley & Sons, vol. 68(3), pages 359-377, April.
    17. Beliën, Jeroen & Forcé, Hein, 2012. "Supply chain management of blood products: A literature review," European Journal of Operational Research, Elsevier, vol. 217(1), pages 1-16.
    18. Madhukar Nagare & Pankaj Dutta & Pravin Suryawanshi, 2020. "Optimal procurement and discount pricing for single-period non-instantaneous deteriorating products with promotional efforts," Operational Research, Springer, vol. 20(1), pages 89-117, March.
    19. Hailun Zhang & Jiheng Zhang & Rachel Q. Zhang, 2020. "Simple Policies with Provable Bounds for Managing Perishable Inventory," Production and Operations Management, Production and Operations Management Society, vol. 29(11), pages 2637-2650, November.
    20. Chiu, Huan Neng, 1995. "An approximation to the continuous review inventory model with perishable items and lead times," European Journal of Operational Research, Elsevier, vol. 87(1), pages 93-108, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:143:y:2013:i:2:p:434-439. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.