IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v134y2011i1p246-254.html
   My bibliography  Save this article

Economical evaluation of greenhouse layout design

Author

Listed:
  • Eben-Chaime, Moshe
  • Bechar, Avital
  • Baron, Ana

Abstract

This paper offers mutual exchange of knowledge and expertise between agriculture and production-economy by economical evaluation of greenhouses. Greenhouses are Hi-Tech horticulture farms, in which advanced technological infrastructure increase production efficiency by providing optimal growing conditions. However, this infrastructure involves high capital investments. There are other cost sources, of which labor is dominant, generally in horticulture and in greenhouses in particular. Efficient use of space and labor are often conflicting goals in greenhouse layout design. In this paper, these conflicts are presented and illustrated, and tools are developed to evaluate layout design by the resultant annual operational profit, thus enable comparison of alternative layouts. To increase accessibility, spreadsheet software is used for the calculations. Further, the spreadsheet is designed to support WHAT-IF analyses. The applicability of the proposed approach is demonstrated via numerical analyses of layout design of an actual greenhouse for pepper growing using the Holland method. Evidently, the layout design can have significant effect on the economical efficiency of the greenhouse--annual profit increases by, at least 12%, and up to 40%! The tradeoff between space utilization and resource utilization; e.g., labor, is common to all greenhouses, whether vegetables, flowers or other plants are grown in them and the tools presented herein can be easily modified to any desired case.

Suggested Citation

  • Eben-Chaime, Moshe & Bechar, Avital & Baron, Ana, 2011. "Economical evaluation of greenhouse layout design," International Journal of Production Economics, Elsevier, vol. 134(1), pages 246-254, November.
  • Handle: RePEc:eee:proeco:v:134:y:2011:i:1:p:246-254
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527311002891
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gomez, A. & Fernandez, Q. I. & De la Fuente Garcia, D. & Garcia, P. J., 2003. "Using genetic algorithms to resolve layout problems in facilities where there are aisles," International Journal of Production Economics, Elsevier, vol. 84(3), pages 271-282, June.
    2. Hicks, C., 2004. "A genetic algorithm tool for designing manufacturing facilities in the capital goods industry," International Journal of Production Economics, Elsevier, vol. 90(2), pages 199-211, July.
    3. Gupta, Mathala J & Chandra, Pitam, 2002. "Effect of greenhouse design parameters on conservation of energy for greenhouse environmental control," Energy, Elsevier, vol. 27(8), pages 777-794.
    4. Hicks, Christian, 2006. "A Genetic Algorithm tool for optimising cellular or functional layouts in the capital goods industry," International Journal of Production Economics, Elsevier, vol. 104(2), pages 598-614, December.
    5. Velasquez, Juan D. & Lara, Marco A. & Nof, Shimon Y., 2008. "Systematic resolution of conflict situations in collaborative facility design," International Journal of Production Economics, Elsevier, vol. 116(1), pages 139-153, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guohua Gao & Yongbing Feng & Zihua Zhang & Shuangyou Wang & Zizhao Yang, 2023. "Integrating SLP with simulation to design and evaluate facility layout for industrial head lettuce production," Annals of Operations Research, Springer, vol. 321(1), pages 209-240, February.
    2. Hu, Ming-Che & Chen, Yu-Hui & Huang, Li-Chun, 2014. "A sustainable vegetable supply chain using plant factories in Taiwanese markets: A Nash–Cournot model," International Journal of Production Economics, Elsevier, vol. 152(C), pages 49-56.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ioannou, George, 2006. "Time-phased creation of hybrid manufacturing systems," International Journal of Production Economics, Elsevier, vol. 102(2), pages 183-198, August.
    2. Vitayasak, Srisatja & Pongcharoen, Pupong & Hicks, Chris, 2017. "A tool for solving stochastic dynamic facility layout problems with stochastic demand using either a Genetic Algorithm or modified Backtracking Search Algorithm," International Journal of Production Economics, Elsevier, vol. 190(C), pages 146-157.
    3. Nearchou, Andreas C., 2006. "Meta-heuristics from nature for the loop layout design problem," International Journal of Production Economics, Elsevier, vol. 101(2), pages 312-328, June.
    4. Mohammad Akrami & Alaa H. Salah & Akbar A. Javadi & Hassan E.S. Fath & Matthew J. Hassanein & Raziyeh Farmani & Mahdieh Dibaj & Abdelazim Negm, 2020. "Towards a Sustainable Greenhouse: Review of Trends and Emerging Practices in Analysing Greenhouse Ventilation Requirements to Sustain Maximum Agricultural Yield," Sustainability, MDPI, vol. 12(7), pages 1-18, April.
    5. Ghasemi Mobtaker, Hassan & Ajabshirchi, Yahya & Ranjbar, Seyed Faramarz & Matloobi, Mansour, 2016. "Solar energy conservation in greenhouse: Thermal analysis and experimental validation," Renewable Energy, Elsevier, vol. 96(PA), pages 509-519.
    6. Ouazzani Chahidi, Laila & Fossa, Marco & Priarone, Antonella & Mechaqrane, Abdellah, 2021. "Energy saving strategies in sustainable greenhouse cultivation in the mediterranean climate – A case study," Applied Energy, Elsevier, vol. 282(PA).
    7. Adnan Rasheed & Jong Won Lee & Hyun Woo Lee, 2018. "Development and Optimization of a Building Energy Simulation Model to Study the Effect of Greenhouse Design Parameters," Energies, MDPI, vol. 11(8), pages 1-19, August.
    8. Uk-Hyeon Yeo & Sang-Yeon Lee & Se-Jun Park & Jun-Gyu Kim & Young-Bae Choi & Rack-Woo Kim & Jong Hwa Shin & In-Bok Lee, 2022. "Rooftop Greenhouse: (1) Design and Validation of a BES Model for a Plastic-Covered Greenhouse Considering the Tomato Crop Model and Natural Ventilation Characteristics," Agriculture, MDPI, vol. 12(7), pages 1-25, June.
    9. Lin, Terry & Goldsworthy, Mark & Chavan, Sachin & Liang, Weiguang & Maier, Chelsea & Ghannoum, Oula & Cazzonelli, Christopher I. & Tissue, David T. & Lan, Yi-Chen & Sethuvenkatraman, Subbu & Lin, Han , 2022. "A novel cover material improves cooling energy and fertigation efficiency for glasshouse eggplant production," Energy, Elsevier, vol. 251(C).
    10. Asgharipour, Mohammad Reza & Amiri, Zahra & Campbell, Daniel E., 2020. "Evaluation of the sustainability of four greenhouse vegetable production ecosystems based on an analysis of emergy and social characteristics”," Ecological Modelling, Elsevier, vol. 424(C).
    11. Feng, Chaoqing & Zhang, Lizhuang & Wang, Rui & Yang, Hongbin & Xu, Zhao & Yan, Suying, 2021. "Greenhouse cover plate with dimming and temperature control function," Energy, Elsevier, vol. 221(C).
    12. Li, Bo & Shi, Bijiao & Yao, Zhenzhu & Kumar Shukla, Manoj & Du, Taisheng, 2020. "Energy partitioning and microclimate of solar greenhouse under drip and furrow irrigation systems," Agricultural Water Management, Elsevier, vol. 234(C).
    13. Song, Dong-Ping, 2006. "Raw material release time control for complex make-to-order products with stochastic processing times," International Journal of Production Economics, Elsevier, vol. 103(1), pages 371-385, September.
    14. Muñoz-Liesa, Joan & Royapoor, Mohammad & López-Capel, Elisa & Cuerva, Eva & Rufí-Salís, Martí & Gassó-Domingo, Santiago & Josa, Alejandro, 2020. "Quantifying energy symbiosis of building-integrated agriculture in a mediterranean rooftop greenhouse," Renewable Energy, Elsevier, vol. 156(C), pages 696-709.
    15. Parajuli, Samvid & Narayan Bhattarai, Tek & Gorjian, Shiva & Vithanage, Meththika & Raj Paudel, Shukra, 2023. "Assessment of potential renewable energy alternatives for a typical greenhouse aquaponics in Himalayan Region of Nepal," Applied Energy, Elsevier, vol. 344(C).
    16. Hicks, Christian, 2006. "A Genetic Algorithm tool for optimising cellular or functional layouts in the capital goods industry," International Journal of Production Economics, Elsevier, vol. 104(2), pages 598-614, December.
    17. Patalas-Maliszewska Justyna, 2013. "A Model of Knowledge Sharing in Polish Manufacturing Enterprises," Foundations of Management, Sciendo, vol. 5(2), pages 1-10, December.
    18. McGovern, T. & Hicks, C., 2004. "Deregulation and restructuring of the global electricity supply industry and its impact upon power plant suppliers," International Journal of Production Economics, Elsevier, vol. 89(3), pages 321-337, June.
    19. Kwong, C.K. & Luo, X.G. & Tang, J.F., 2011. "A methodology for optimal product positioning with engineering constraints consideration," International Journal of Production Economics, Elsevier, vol. 132(1), pages 93-100, July.
    20. Wu, Xiaoyang & Li, Yiming & Jiang, Lingling & Wang, Yang & Liu, Xingan & Li, Tianlai, 2023. "A systematic analysis of multiple structural parameters of Chinese solar greenhouse based on the thermal performance," Energy, Elsevier, vol. 273(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:134:y:2011:i:1:p:246-254. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.