IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v120y2009i2p340-347.html
   My bibliography  Save this article

A method for reducing inter-departure time variability in serial production lines

Author

Listed:
  • Kalir, Adar A.
  • Sarin, Subhash C.

Abstract

The inter-departure time variability is an important measure in production lines. Higher variability means added work-in-process and less predictability in output. It can be a primary obstacle towards achieving on-time delivery. The effects of line parameters (e.g., line length or buffer capacity) on inter-departure time variability have been studied in recent years but no method has been proposed for its reduction. In this paper, such a strategy is proposed and studied via simulation. Results indicate that significant reductions (of more than 20%) in inter-departure time variability can be achieved for as little as 0.5% increase in the mean inter-departure time or without any increase at all, for a majority of the line parameter values experimented. This was found to be the case for symmetrical (uniform) processing time distributions as well as for asymmetrical skewed (exponential) distributions. Similar results have also been obtained in the application of the proposed strategy for the case when one station has a higher variance than the others. Therefore, in situations where output predictability is more of a problem than capacity, this strategy constitutes an effective alternative.

Suggested Citation

  • Kalir, Adar A. & Sarin, Subhash C., 2009. "A method for reducing inter-departure time variability in serial production lines," International Journal of Production Economics, Elsevier, vol. 120(2), pages 340-347, August.
  • Handle: RePEc:eee:proeco:v:120:y:2009:i:2:p:340-347
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925-5273(09)00010-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tan, Baris, 1998. "Effects of variability on the due-time performance of a continuous materials flow production system in series," International Journal of Production Economics, Elsevier, vol. 54(1), pages 87-100, January.
    2. Gordon C. Hunt, 1956. "Sequential Arrays of Waiting Lines," Operations Research, INFORMS, vol. 4(6), pages 674-683, December.
    3. Li, Na & Zhang, Mike Tao & Deng, Shiming & Lee, Zu-Hsu & Zhang, Lawrence & Zheng, Li, 2007. "Single-station performance evaluation and improvement in semiconductor manufacturing: A graphical approach," International Journal of Production Economics, Elsevier, vol. 107(2), pages 397-403, June.
    4. Charles E. Clark, 1961. "The Greatest of a Finite Set of Random Variables," Operations Research, INFORMS, vol. 9(2), pages 145-162, April.
    5. Stanley B. Gershwin, 1987. "An Efficient Decomposition Method for the Approximate Evaluation of Tandem Queues with Finite Storage Space and Blocking," Operations Research, INFORMS, vol. 35(2), pages 291-305, April.
    6. Lynes, Krysia & Miltenburg, John, 1994. "The application of an open queueing network to the analysis of cycle time, variability, throughput, inventory and cost in the batch production system of a microelectronics manufacturer," International Journal of Production Economics, Elsevier, vol. 37(2-3), pages 189-203, December.
    7. Kevin B. Hendricks & John O. McClain, 1993. "The Output Process of Serial Production Lines of General Machines with Finite Buffers," Management Science, INFORMS, vol. 39(10), pages 1194-1201, October.
    8. Richard Conway & William Maxwell & John O. McClain & L. Joseph Thomas, 1988. "The Role of Work-in-Process Inventory in Serial Production Lines," Operations Research, INFORMS, vol. 36(2), pages 229-241, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sabry Shaaban & Rodrigo Romero-Silva, 2021. "Performance of merging lines with uneven buffer capacity allocation: the effects of unreliability under different inventory-related costs," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(4), pages 1253-1288, December.
    2. Dauzère-Pérès, Stéphane & Hassoun, Michael, 2020. "On the importance of variability when managing metrology capacity," European Journal of Operational Research, Elsevier, vol. 282(1), pages 267-276.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lutz, Christian M. & Roscoe Davis, K. & Sun, Minghe, 1998. "Determining buffer location and size in production lines using tabu search," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 301-316, April.
    2. Sachs, F.E. & Helber, S. & Kiesmüller, G.P., 2022. "Evaluation of Unreliable Flow Lines with Limited Buffer Capacities and Spare Part Provisioning," European Journal of Operational Research, Elsevier, vol. 302(2), pages 544-559.
    3. Konstantinos S. Boulas & Georgios D. Dounias & Chrissoleon T. Papadopoulos, 2023. "A hybrid evolutionary algorithm approach for estimating the throughput of short reliable approximately balanced production lines," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 823-852, February.
    4. Papadopoulos, H. T. & Heavey, C., 1996. "Queueing theory in manufacturing systems analysis and design: A classification of models for production and transfer lines," European Journal of Operational Research, Elsevier, vol. 92(1), pages 1-27, July.
    5. Saied Samiedaluie & Vedat Verter, 2019. "The impact of specialization of hospitals on patient access to care; a queuing analysis with an application to a neurological hospital," Health Care Management Science, Springer, vol. 22(4), pages 709-726, December.
    6. Urban, Timothy L. & Chiang, Wen-Chyuan, 2016. "Designing energy-efficient serial production lines: The unpaced synchronous line-balancing problem," European Journal of Operational Research, Elsevier, vol. 248(3), pages 789-801.
    7. Belmansour, Ahmed-Tidjani & Nourelfath, Mustapha, 2010. "An aggregation method for performance evaluation of a tandem homogenous production line with machines having multiple failure modes," Reliability Engineering and System Safety, Elsevier, vol. 95(11), pages 1193-1201.
    8. Meller, Russell D. & Kim, David S., 1996. "The impact of preventive maintenance on system cost and buffer size," European Journal of Operational Research, Elsevier, vol. 95(3), pages 577-591, December.
    9. Suliman, S. M. A., 2000. "A mathematical model for a buffered two-stage manufacturing cell with an unreliable transfer device," International Journal of Production Economics, Elsevier, vol. 63(1), pages 69-81, January.
    10. Hadjinicola, George C. & Soteriou, Andreas C., 2003. "Reducing the cost of defects in multistage production systems: A budget allocation perspective," European Journal of Operational Research, Elsevier, vol. 145(3), pages 621-634, March.
    11. Noa Zychlinski & Avishai Mandelbaum & Petar Momčilović, 2018. "Time-varying tandem queues with blocking: modeling, analysis, and operational insights via fluid models with reflection," Queueing Systems: Theory and Applications, Springer, vol. 89(1), pages 15-47, June.
    12. Kiesmüller, G.P. & Sachs, F.E., 2020. "Spare parts or buffer? How to design a transfer line with unreliable machines," European Journal of Operational Research, Elsevier, vol. 284(1), pages 121-134.
    13. Stephen G. Powell & Kenneth L. Schultz, 2004. "Throughput in Serial Lines with State-Dependent Behavior," Management Science, INFORMS, vol. 50(8), pages 1095-1105, August.
    14. Subba Rao, S. & Gunasekaran, A. & Goyal, S. K. & Martikainen, T., 1998. "Waiting line model applications in manufacturing," International Journal of Production Economics, Elsevier, vol. 54(1), pages 1-28, January.
    15. Bolduc, Denis & Kaci, Mustapha, 1993. "Estimation des modèles probit polytomiques : un survol des techniques," L'Actualité Economique, Société Canadienne de Science Economique, vol. 69(3), pages 161-191, septembre.
    16. David Bergman & Carlos Cardonha & Jason Imbrogno & Leonardo Lozano, 2023. "Optimizing the Expected Maximum of Two Linear Functions Defined on a Multivariate Gaussian Distribution," INFORMS Journal on Computing, INFORMS, vol. 35(2), pages 304-317, March.
    17. Lof, Matthijs & van Bommel, Jos, 2023. "Asymmetric information and the distribution of trading volume," Journal of Corporate Finance, Elsevier, vol. 82(C).
    18. Alain Patchong & Thierry Lemoine & Gilles Kern, 2003. "Improving Car Body Production at PSA Peugeot Citroën," Interfaces, INFORMS, vol. 33(1), pages 36-49, February.
    19. Elmaghraby, Salah E., 2000. "On criticality and sensitivity in activity networks," European Journal of Operational Research, Elsevier, vol. 127(2), pages 220-238, December.
    20. Elmaghraby, S. E. & Fathi, Y. & Taner, M. R., 1999. "On the sensitivity of project variability to activity mean duration," International Journal of Production Economics, Elsevier, vol. 62(3), pages 219-232, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:120:y:2009:i:2:p:340-347. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.