IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v34y2023i2d10.1007_s10845-021-01828-6.html
   My bibliography  Save this article

A hybrid evolutionary algorithm approach for estimating the throughput of short reliable approximately balanced production lines

Author

Listed:
  • Konstantinos S. Boulas

    (University of the Aegean)

  • Georgios D. Dounias

    (University of the Aegean)

  • Chrissoleon T. Papadopoulos

    (Aristotle University of Thessaloniki)

Abstract

The analytical evaluation of production system performance measures is a difficult task. Over the years, various methods have been developed to solve specific cases of very short production lines. However, formulae for estimating the mean production rate (throughput) are lacking. Recent developments in artificial intelligence simplify their use in the solution of symbolic regression problems. In this work, we use genetic programming (GP) to obtain approximate formulae for calculating the throughput of short reliable approximately balanced production lines, for which the processing times are exponentially distributed. A hybrid GP&GA scheme reduces the search space, in which GP uses genetic algorithms (GA) as a search engine. The scheme produces polynomial formulae for throughput estimation for the first time. To train the GP algorithm we use MARKOV, an accurate algorithm for calculating numerically the exact throughput of short exponential production lines. A few formulae, not previously reported in the literature, are presented. These formulae give close results to the exact results from the MARKOV algorithm, for short (up to five stations) reliable approximately balanced production lines without intermediate buffers. Also, the robustness of these formulae is satisfactory. In addition, the proposed hybrid GP&GA scheme is useful for design/production engineers to adjust the formulae to other ranges of the mean processing rates; the algorithms are quickly retrained to generate a new approximate formula.

Suggested Citation

  • Konstantinos S. Boulas & Georgios D. Dounias & Chrissoleon T. Papadopoulos, 2023. "A hybrid evolutionary algorithm approach for estimating the throughput of short reliable approximately balanced production lines," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 823-852, February.
  • Handle: RePEc:spr:joinma:v:34:y:2023:i:2:d:10.1007_s10845-021-01828-6
    DOI: 10.1007/s10845-021-01828-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-021-01828-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-021-01828-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. W. Qin & J. Zhang & D. Song, 2018. "An improved ant colony algorithm for dynamic hybrid flow shop scheduling with uncertain processing time," Journal of Intelligent Manufacturing, Springer, vol. 29(4), pages 891-904, April.
    2. Chayma Sellami & Carlos Miranda & Ahmed Samet & Mohamed Anis Bach Tobji & François de Beuvron, 2020. "On mining frequent chronicles for machine failure prediction," Journal of Intelligent Manufacturing, Springer, vol. 31(4), pages 1019-1035, April.
    3. Gordon C. Hunt, 1956. "Sequential Arrays of Waiting Lines," Operations Research, INFORMS, vol. 4(6), pages 674-683, December.
    4. Hao-Chin Chang & Tung-Kuan Liu, 2017. "Optimisation of distributed manufacturing flexible job shop scheduling by using hybrid genetic algorithms," Journal of Intelligent Manufacturing, Springer, vol. 28(8), pages 1973-1986, December.
    5. Muth, Eginhard J., 1984. "Stochastic processes and their network representations associated with a production line queuing model," European Journal of Operational Research, Elsevier, vol. 15(1), pages 63-83, January.
    6. Herbert A. Simon, 1996. "The Sciences of the Artificial, 3rd Edition," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262691914, December.
    7. Abdullah Falih & Ahmed Z. M. Shammari, 2020. "Hybrid constrained permutation algorithm and genetic algorithm for process planning problem," Journal of Intelligent Manufacturing, Springer, vol. 31(5), pages 1079-1099, June.
    8. Bilal S. A. Alhayani & Haci llhan, 2021. "RETRACTED ARTICLE: Visual sensor intelligent module based image transmission in industrial manufacturing for monitoring and manipulation problems," Journal of Intelligent Manufacturing, Springer, vol. 32(2), pages 597-610, February.
    9. Biranchi Panda & K. Shankhwar & Akhil Garg & M. M. Savalani, 2019. "Evaluation of genetic programming-based models for simulating bead dimensions in wire and arc additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 30(2), pages 809-820, February.
    10. Papadopoulos, Hrissoleon T., 1996. "An analytic formula for the mean throughput of K-station production lines with no intermediate buffers," European Journal of Operational Research, Elsevier, vol. 91(3), pages 481-494, June.
    11. James T. Lin & Chun-Chih Chiu, 2018. "A hybrid particle swarm optimization with local search for stochastic resource allocation problem," Journal of Intelligent Manufacturing, Springer, vol. 29(3), pages 481-495, March.
    12. Diomidis Spinellis & Michael J. Vidalis & Michael E. J. O'Kelly & Chrissoleon T. Papadopoulos, 2009. "Analysis and Design of Discrete Part Production Lines," Springer Optimization and Its Applications, Springer, number 978-0-387-89494-2, September.
    13. Yicha Zhang & Alain Bernard & Ramy Harik & K. P. Karunakaran, 2017. "Build orientation optimization for multi-part production in additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 28(6), pages 1393-1407, August.
    14. Andreas Kuhnle & Jan-Philipp Kaiser & Felix Theiß & Nicole Stricker & Gisela Lanza, 2021. "Designing an adaptive production control system using reinforcement learning," Journal of Intelligent Manufacturing, Springer, vol. 32(3), pages 855-876, March.
    15. Liu, Jialu & Yang, Sheng & Wu, Aiguo & Hu, S. Jack, 2012. "Multi-state throughput analysis of a two-stage manufacturing system with parallel unreliable machines and a finite buffer," European Journal of Operational Research, Elsevier, vol. 219(2), pages 296-304.
    16. Papadopoulos, H. T. & Heavey, C., 1996. "Queueing theory in manufacturing systems analysis and design: A classification of models for production and transfer lines," European Journal of Operational Research, Elsevier, vol. 92(1), pages 1-27, July.
    17. Antonio Costa & Fulvio Antonio Cappadonna & Sergio Fichera, 2017. "A hybrid genetic algorithm for minimizing makespan in a flow-shop sequence-dependent group scheduling problem," Journal of Intelligent Manufacturing, Springer, vol. 28(6), pages 1269-1283, August.
    18. Lei Li & YanLing Qian & Kai Du & YongMin Yang, 2016. "Analysis of approximately balanced production lines," International Journal of Production Research, Taylor & Francis Journals, vol. 54(3), pages 647-664, February.
    19. Chettha Chamnanlor & Kanchana Sethanan & Mitsuo Gen & Chen-Fu Chien, 2017. "Embedding ant system in genetic algorithm for re-entrant hybrid flow shop scheduling problems with time window constraints," Journal of Intelligent Manufacturing, Springer, vol. 28(8), pages 1915-1931, December.
    20. Stanley B. Gershwin, 1987. "An Efficient Decomposition Method for the Approximate Evaluation of Tandem Queues with Finite Storage Space and Blocking," Operations Research, INFORMS, vol. 35(2), pages 291-305, April.
    21. Choo Jun Tan & Siew Chin Neoh & Chee Peng Lim & Samer Hanoun & Wai Peng Wong & Chu Kong Loo & Li Zhang & Saeid Nahavandi, 2019. "Application of an evolutionary algorithm-based ensemble model to job-shop scheduling," Journal of Intelligent Manufacturing, Springer, vol. 30(2), pages 879-890, February.
    22. Heavey, C. & Papadopoulos, H. T. & Browne, J., 1993. "The throughput rate of multistation unreliable production lines," European Journal of Operational Research, Elsevier, vol. 68(1), pages 69-89, July.
    23. Hrissoleon T. Papadopoulos, 1995. "The Throughput of Multistation Production Lines with No Intermediate Buffers," Operations Research, INFORMS, vol. 43(4), pages 712-715, August.
    24. Frederick S. Hillier & Ronald W. Boling, 1967. "Finite Queues in Series with Exponential or Erlang Service Times—A Numerical Approach," Operations Research, INFORMS, vol. 15(2), pages 286-303, April.
    25. Simge Yelkenci Kose & Ozcan Kilincci, 2020. "A multi-objective hybrid evolutionary approach for buffer allocation in open serial production lines," Journal of Intelligent Manufacturing, Springer, vol. 31(1), pages 33-51, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Papadopoulos, H. T. & Heavey, C., 1996. "Queueing theory in manufacturing systems analysis and design: A classification of models for production and transfer lines," European Journal of Operational Research, Elsevier, vol. 92(1), pages 1-27, July.
    2. Sachs, F.E. & Helber, S. & Kiesmüller, G.P., 2022. "Evaluation of Unreliable Flow Lines with Limited Buffer Capacities and Spare Part Provisioning," European Journal of Operational Research, Elsevier, vol. 302(2), pages 544-559.
    3. Papadopoulos, Hrissoleon T., 1996. "An analytic formula for the mean throughput of K-station production lines with no intermediate buffers," European Journal of Operational Research, Elsevier, vol. 91(3), pages 481-494, June.
    4. Papadopoulos, H. T., 1998. "An approximate method for calculating the mean sojourn time of K-station production lines with no intermediate buffers," International Journal of Production Economics, Elsevier, vol. 54(3), pages 297-305, May.
    5. Saied Samiedaluie & Vedat Verter, 2019. "The impact of specialization of hospitals on patient access to care; a queuing analysis with an application to a neurological hospital," Health Care Management Science, Springer, vol. 22(4), pages 709-726, December.
    6. Elisa Gebennini & Andrea Grassi & Cesare Fantuzzi & Stanley Gershwin & Irvin Schick, 2013. "Discrete time model for two-machine one-buffer transfer lines with restart policy," Annals of Operations Research, Springer, vol. 209(1), pages 41-65, October.
    7. H. T. Papadopoulos, 1998. "Analysis of production lines with Coxian service times and no intermediate buffers," Naval Research Logistics (NRL), John Wiley & Sons, vol. 45(7), pages 669-685, October.
    8. Jean-Sébastien Tancrez, 2020. "A decomposition method for assembly/disassembly systems with blocking and general distributions," Flexible Services and Manufacturing Journal, Springer, vol. 32(2), pages 272-296, June.
    9. Beixin Xia & Binghai Zhou & Ci Chen & Lifeng Xi, 2016. "A generalized-exponential decomposition method for the analysis of inhomogeneous assembly/disassembly systems with unreliable machines and finite buffers," Journal of Intelligent Manufacturing, Springer, vol. 27(4), pages 765-779, August.
    10. Eva K. Lee & Siddhartha Maheshwary & Jacquelyn Mason & William Glisson, 2006. "Large-Scale Dispensing for Emergency Response to Bioterrorism and Infectious-Disease Outbreak," Interfaces, INFORMS, vol. 36(6), pages 591-607, December.
    11. Korporaal, R. & Ridder, A.A.N. & Kloprogge, P. & Dekker, R., 1999. "Capacity planning of prisons in the Netherlands," Econometric Institute Research Papers EI 9909-/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    12. Zeqi Hu & Xunpeng Qin & Yifeng Li & Jiuxin Yuan & Qiang Wu, 2020. "Multi-bead overlapping model with varying cross-section profile for robotic GMAW-based additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 31(5), pages 1133-1147, June.
    13. Andrea Matta & Francesca Simone, 2016. "Analysis of two-machine lines with finite buffer, operation-dependent and time-dependent failure modes," International Journal of Production Research, Taylor & Francis Journals, vol. 54(6), pages 1850-1862, March.
    14. Papadopoulos, H. T. & Vidalis, M. I., 2001. "Minimizing WIP inventory in reliable production lines," International Journal of Production Economics, Elsevier, vol. 70(2), pages 185-197, March.
    15. Lenin Nagarajan & Siva Kumar Mahalingam & Jayakrishna Kandasamy & Selvakumar Gurusamy, 2022. "A novel approach in selective assembly with an arbitrary distribution to minimize clearance variation using evolutionary algorithms: a comparative study," Journal of Intelligent Manufacturing, Springer, vol. 33(5), pages 1337-1354, June.
    16. Belmansour, Ahmed-Tidjani & Nourelfath, Mustapha, 2010. "An aggregation method for performance evaluation of a tandem homogenous production line with machines having multiple failure modes," Reliability Engineering and System Safety, Elsevier, vol. 95(11), pages 1193-1201.
    17. Ziwei Lin & Nicla Frigerio & Andrea Matta & Shichang Du, 2021. "Multi-fidelity surrogate-based optimization for decomposed buffer allocation problems," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(1), pages 223-253, March.
    18. Baker, Kenneth R. & Powell, Stephen G., 1995. "A predictive model for the throughput of simple assembly systems," European Journal of Operational Research, Elsevier, vol. 81(2), pages 336-345, March.
    19. Jean-Sébastien Tancrez & Philippe Chevalier & Pierre Semal, 2011. "Probability masses fitting in the analysis of manufacturing flow lines," Annals of Operations Research, Springer, vol. 182(1), pages 163-191, January.
    20. Jeffrey M. Alden & Lawrence D. Burns & Theodore Costy & Richard D. Hutton & Craig A. Jackson & David S. Kim & Kevin A. Kohls & Jonathan H. Owen & Mark A. Turnquist & David J. Vander Veen, 2006. "General Motors Increases Its Production Throughput," Interfaces, INFORMS, vol. 36(1), pages 6-25, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:34:y:2023:i:2:d:10.1007_s10845-021-01828-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.