IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v4y1956i6p674-683.html
   My bibliography  Save this article

Sequential Arrays of Waiting Lines

Author

Listed:
  • Gordon C. Hunt

    (Massachusetts Institute of Technology, Cambridge, Massachusetts)

Abstract

The problem considered in this paper is that in which a sequence of service operations must be performed on the units to be serviced. Poisson arrivals and exponential service times are assumed. Four particular cases of service facilities in series are treated, involving infinite storage space between stages, no storage space between stages, finite storage space between stages, and the case of the unpaced belt-production line. A comparison is given for two stages, and the maximum possible utilization is obtained for all cases discussed.

Suggested Citation

  • Gordon C. Hunt, 1956. "Sequential Arrays of Waiting Lines," Operations Research, INFORMS, vol. 4(6), pages 674-683, December.
  • Handle: RePEc:inm:oropre:v:4:y:1956:i:6:p:674-683
    DOI: 10.1287/opre.4.6.674
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.4.6.674
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.4.6.674?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. A. Gómez‐Corral, 2004. "Sojourn times in a two‐stage queueing network with blocking," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(8), pages 1068-1089, December.
    2. Genji Yamazaki & Hirotaka Sakasegawa, 1975. "Properties of duality in tandem queueing systems," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 27(1), pages 201-212, December.
    3. Konstantinos S. Boulas & Georgios D. Dounias & Chrissoleon T. Papadopoulos, 2023. "A hybrid evolutionary algorithm approach for estimating the throughput of short reliable approximately balanced production lines," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 823-852, February.
    4. Palmer, Geraint I. & Harper, Paul R. & Knight, Vincent A., 2018. "Modelling deadlock in open restricted queueing networks," European Journal of Operational Research, Elsevier, vol. 266(2), pages 609-621.
    5. Stephen G. Powell & Kenneth L. Schultz, 2004. "Throughput in Serial Lines with State-Dependent Behavior," Management Science, INFORMS, vol. 50(8), pages 1095-1105, August.
    6. Wu, Xiaodan & Li, Juan & Chu, Chao-Hsien, 2019. "Modeling multi-stage healthcare systems with service interactions under blocking for bed allocation," European Journal of Operational Research, Elsevier, vol. 278(3), pages 927-941.
    7. Papadopoulos, Hrissoleon T., 1996. "An analytic formula for the mean throughput of K-station production lines with no intermediate buffers," European Journal of Operational Research, Elsevier, vol. 91(3), pages 481-494, June.
    8. Papadopoulos, H. T. & Heavey, C., 1996. "Queueing theory in manufacturing systems analysis and design: A classification of models for production and transfer lines," European Journal of Operational Research, Elsevier, vol. 92(1), pages 1-27, July.
    9. Saied Samiedaluie & Vedat Verter, 2019. "The impact of specialization of hospitals on patient access to care; a queuing analysis with an application to a neurological hospital," Health Care Management Science, Springer, vol. 22(4), pages 709-726, December.
    10. Khalil, T.M. & Valisalo, P.E. & Copsey, A., 1973. "Hybrid computer solution of queueing systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 15(2), pages 49-53.
    11. Hirotaka Sakasegawa & Genji Yamazaki, 1977. "Inequalities and an approximation formula for the mean delay time in tandem queueing systems," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 29(1), pages 445-466, December.
    12. Lutz, Christian M. & Roscoe Davis, K. & Sun, Minghe, 1998. "Determining buffer location and size in production lines using tabu search," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 301-316, April.
    13. Kalir, Adar A. & Sarin, Subhash C., 2009. "A method for reducing inter-departure time variability in serial production lines," International Journal of Production Economics, Elsevier, vol. 120(2), pages 340-347, August.
    14. Baker, Kenneth R. & Powell, Stephen G., 1995. "A predictive model for the throughput of simple assembly systems," European Journal of Operational Research, Elsevier, vol. 81(2), pages 336-345, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:4:y:1956:i:6:p:674-683. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.