IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v278y2019i3p927-941.html
   My bibliography  Save this article

Modeling multi-stage healthcare systems with service interactions under blocking for bed allocation

Author

Listed:
  • Wu, Xiaodan
  • Li, Juan
  • Chu, Chao-Hsien

Abstract

Balancing bed allocation is a critical but cumbersome decision-making process in hospitals due to limited capacity, fluctuations in the rate of patient arrival and service interactions among various units; typically, this will cause blockages in multi-stage healthcare services. Accurately estimating the blocking probability is an important task in order to improve the performance of healthcare systems. Early studies assumed either unlimited bed capacity or no service interaction among units. In this study, we consider the correlation between the blockage and service time of the subsequent stage and apply a multi-stage tandem-queuing model with limited bed capacity and service interactions to model healthcare systems. We develop two effective heuristics to estimate the patient-blocking probability, which are then used to develop an integrated mathematical model for bed allocation. We collect real-world data from a tertiary hospital in China to delineate the effect of service interactions while estimating the blocking probability and use non-parametric rank-sum tests to verify and compare the relative performances of the proposed model against two popular heuristics. Our comparative results illustrate that the proposed model is as accurate as simulations. We also observe that increasing the number of beds during the first stage is more effective in reducing blockage than doing so later in case of a limited number of beds.

Suggested Citation

  • Wu, Xiaodan & Li, Juan & Chu, Chao-Hsien, 2019. "Modeling multi-stage healthcare systems with service interactions under blocking for bed allocation," European Journal of Operational Research, Elsevier, vol. 278(3), pages 927-941.
  • Handle: RePEc:eee:ejores:v:278:y:2019:i:3:p:927-941
    DOI: 10.1016/j.ejor.2019.05.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221719303881
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2019.05.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Burdett, Robert & Kozan, Erhan, 2016. "A multi-criteria approach for hospital capacity analysis," European Journal of Operational Research, Elsevier, vol. 255(2), pages 505-521.
    2. Andersen, Anders Reenberg & Nielsen, Bo Friis & Reinhardt, Line Blander, 2017. "Optimization of hospital ward resources with patient relocation using Markov chain modeling," European Journal of Operational Research, Elsevier, vol. 260(3), pages 1152-1163.
    3. Gordon C. Hunt, 1956. "Sequential Arrays of Waiting Lines," Operations Research, INFORMS, vol. 4(6), pages 674-683, December.
    4. Marynissen, Joren & Demeulemeester, Erik, 2019. "Literature review on multi-appointment scheduling problems in hospitals," European Journal of Operational Research, Elsevier, vol. 272(2), pages 407-419.
    5. Schwartz, Yair & Raslan, Rokia & Mumovic, Dejan, 2016. "Implementing multi objective genetic algorithm for life cycle carbon footprint and life cycle cost minimisation: A building refurbishment case study," Energy, Elsevier, vol. 97(C), pages 58-68.
    6. Golmohammadi, Davood, 2016. "Predicting hospital admissions to reduce emergency department boarding," International Journal of Production Economics, Elsevier, vol. 182(C), pages 535-544.
    7. Jeffery K. Cochran & Aseem Bharti, 2006. "A multi-stage stochastic methodology for whole hospital bed planning under peak loading," International Journal of Industrial and Systems Engineering, Inderscience Enterprises Ltd, vol. 1(1/2), pages 8-36.
    8. Di Lin & Jonathan Patrick & Fabrice Labeau, 2014. "Estimating the waiting time of multi-priority emergency patients with downstream blocking," Health Care Management Science, Springer, vol. 17(1), pages 88-99, March.
    9. Ben Bachouch, Rym & Guinet, Alain & Hajri-Gabouj, Sonia, 2012. "An integer linear model for hospital bed planning," International Journal of Production Economics, Elsevier, vol. 140(2), pages 833-843.
    10. Luscombe, Ruth & Kozan, Erhan, 2016. "Dynamic resource allocation to improve emergency department efficiency in real time," European Journal of Operational Research, Elsevier, vol. 255(2), pages 593-603.
    11. Osorio, Carolina & Bierlaire, Michel, 2009. "An analytic finite capacity queueing network model capturing the propagation of congestion and blocking," European Journal of Operational Research, Elsevier, vol. 196(3), pages 996-1007, August.
    12. Wang, Yu & Zhang, Yu & Tang, Jiafu, 2019. "A distributionally robust optimization approach for surgery block allocation," European Journal of Operational Research, Elsevier, vol. 273(2), pages 740-753.
    13. Huilan Jiang & Bingqi Liu & Yawei Wang & Shuangqi Zheng, 2014. "Multiobjective TOU Pricing Optimization Based on NSGA2," Journal of Applied Mathematics, Hindawi, vol. 2014, pages 1-8, July.
    14. Yichuan Ding & Eric Park & Mahesh Nagarajan & Eric Grafstein, 2019. "Patient Prioritization in Emergency Department Triage Systems: An Empirical Study of the Canadian Triage and Acuity Scale (CTAS)," Manufacturing & Service Operations Management, INFORMS, vol. 21(4), pages 723-741, October.
    15. René Bekker & Ger Koole & Dennis Roubos, 2017. "Flexible bed allocations for hospital wards," Health Care Management Science, Springer, vol. 20(4), pages 453-466, December.
    16. F Gorunescu & S I McClean & P H Millard, 2002. "A queueing model for bed-occupancy management and planning of hospitals," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 53(1), pages 19-24, January.
    17. Frederick S. Hillier & Ronald W. Boling, 1967. "Finite Queues in Series with Exponential or Erlang Service Times—A Numerical Approach," Operations Research, INFORMS, vol. 15(2), pages 286-303, April.
    18. X Li & P Beullens & D Jones & M Tamiz, 2009. "An integrated queuing and multi-objective bed allocation model with application to a hospital in China," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(3), pages 330-338, March.
    19. Zhou, Liping & Geng, Na & Jiang, Zhibin & Wang, Xiuxian, 2018. "Multi-objective capacity allocation of hospital wards combining revenue and equity," Omega, Elsevier, vol. 81(C), pages 220-233.
    20. Junfei Huang & Boaz Carmeli & Avishai Mandelbaum, 2015. "Control of Patient Flow in Emergency Departments, or Multiclass Queues with Deadlines and Feedback," Operations Research, INFORMS, vol. 63(4), pages 892-908, August.
    21. J. G. Dai & Pengyi Shi, 2017. "A Two-Time-Scale Approach to Time-Varying Queues in Hospital Inpatient Flow Management," Operations Research, INFORMS, vol. 65(2), pages 514-536, April.
    22. Natalia Yankovic & Linda V. Green, 2011. "Identifying Good Nursing Levels: A Queuing Approach," Operations Research, INFORMS, vol. 59(4), pages 942-955, August.
    23. Kan Wu & Yichi Shen & Ning Zhao, 2017. "Analysis of tandem queues with finite buffer capacity," IISE Transactions, Taylor & Francis Journals, vol. 49(11), pages 1001-1013, November.
    24. Burdett, Robert L. & Kozan, Erhan, 2018. "An integrated approach for scheduling health care activities in a hospital," European Journal of Operational Research, Elsevier, vol. 264(2), pages 756-773.
    25. Mohammadi Bidhandi, Hadi & Patrick, Jonathan & Noghani, Pedram & Varshoei, Peyman, 2019. "Capacity planning for a network of community health services," European Journal of Operational Research, Elsevier, vol. 275(1), pages 266-279.
    26. Avishai Mandelbaum & Petar Momčilović & Yulia Tseytlin, 2012. "On Fair Routing from Emergency Departments to Hospital Wards: QED Queues with Heterogeneous Servers," Management Science, INFORMS, vol. 58(7), pages 1273-1291, July.
    27. Thomas J. Best & Burhaneddin Sandıkçı & Donald D. Eisenstein & David O. Meltzer, 2015. "Managing Hospital Inpatient Bed Capacity Through Partitioning Care into Focused Wings," Manufacturing & Service Operations Management, INFORMS, vol. 17(2), pages 157-176, May.
    28. Robert J. Batt & Christian Terwiesch, 2015. "Waiting Patiently: An Empirical Study of Queue Abandonment in an Emergency Department," Management Science, INFORMS, vol. 61(1), pages 39-59, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiaqi Chen & Song Xu & Jing Gao, 2020. "The Mixed Effect of China’s New Health Care Reform on Health Insurance Coverage and the Efficiency of Health Service Utilisation: A Longitudinal Approach," IJERPH, MDPI, vol. 17(5), pages 1-13, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amir Elalouf & Guy Wachtel, 2022. "Queueing Problems in Emergency Departments: A Review of Practical Approaches and Research Methodologies," SN Operations Research Forum, Springer, vol. 3(1), pages 1-46, March.
    2. J. G. Dai & Pengyi Shi, 2019. "Inpatient Overflow: An Approximate Dynamic Programming Approach," Manufacturing & Service Operations Management, INFORMS, vol. 21(4), pages 894-911, October.
    3. Tinglong Dai & Sridhar Tayur, 2020. "OM Forum—Healthcare Operations Management: A Snapshot of Emerging Research," Manufacturing & Service Operations Management, INFORMS, vol. 22(5), pages 869-887, September.
    4. Jim G. Dai & Pengyi Shi, 2021. "Recent Modeling and Analytical Advances in Hospital Inpatient Flow Management," Production and Operations Management, Production and Operations Management Society, vol. 30(6), pages 1838-1862, June.
    5. Saied Samiedaluie & Vedat Verter, 2019. "The impact of specialization of hospitals on patient access to care; a queuing analysis with an application to a neurological hospital," Health Care Management Science, Springer, vol. 22(4), pages 709-726, December.
    6. Carri W. Chan & Linda V. Green & Suparerk Lekwijit & Lijian Lu & Gabriel Escobar, 2019. "Assessing the Impact of Service Level When Customer Needs Are Uncertain: An Empirical Investigation of Hospital Step-Down Units," Management Science, INFORMS, vol. 65(2), pages 751-775, February.
    7. Seokjun Youn & H. Neil Geismar & Michael Pinedo, 2022. "Planning and scheduling in healthcare for better care coordination: Current understanding, trending topics, and future opportunities," Production and Operations Management, Production and Operations Management Society, vol. 31(12), pages 4407-4423, December.
    8. Navid Izady & Israa Mohamed, 2021. "A Clustered Overflow Configuration of Inpatient Beds in Hospitals," Manufacturing & Service Operations Management, INFORMS, vol. 23(1), pages 139-154, 1-2.
    9. Jingui Xie & Weifen Zhuang & Marcus Ang & Mabel C. Chou & Li Luo & David D. Yao, 2021. "Analytics for Hospital Resource Planning—Two Case Studies," Production and Operations Management, Production and Operations Management Society, vol. 30(6), pages 1863-1885, June.
    10. Jaime González & Juan-Carlos Ferrer & Alejandro Cataldo & Luis Rojas, 2019. "A proactive transfer policy for critical patient flow management," Health Care Management Science, Springer, vol. 22(2), pages 287-303, June.
    11. Mohammadi Bidhandi, Hadi & Patrick, Jonathan & Noghani, Pedram & Varshoei, Peyman, 2019. "Capacity planning for a network of community health services," European Journal of Operational Research, Elsevier, vol. 275(1), pages 266-279.
    12. Guihua Wang, 2022. "The Effect of Medicaid Expansion on Wait Time in the Emergency Department," Management Science, INFORMS, vol. 68(9), pages 6648-6665, September.
    13. Marynissen, Joren & Demeulemeester, Erik, 2019. "Literature review on multi-appointment scheduling problems in hospitals," European Journal of Operational Research, Elsevier, vol. 272(2), pages 407-419.
    14. Konstantinos S. Boulas & Georgios D. Dounias & Chrissoleon T. Papadopoulos, 2023. "A hybrid evolutionary algorithm approach for estimating the throughput of short reliable approximately balanced production lines," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 823-852, February.
    15. Almehdawe, Eman & Jewkes, Beth & He, Qi-Ming, 2013. "A Markovian queueing model for ambulance offload delays," European Journal of Operational Research, Elsevier, vol. 226(3), pages 602-614.
    16. Burdett, Robert L & Corry, Paul & Yarlagadda, Prasad & Cook, David & Birgan, Sean & McPhail, Steven M, 2023. "A mathematical framework for regional hospital case mix planning and capacity appraisal," Operations Research Perspectives, Elsevier, vol. 10(C).
    17. David D. Cho & Kurt M. Bretthauer & Jan Schoenfelder, 2023. "Patient-to-nurse ratios: Balancing quality, nurse turnover, and cost," Health Care Management Science, Springer, vol. 26(4), pages 807-826, December.
    18. Tippong, Danuphon & Petrovic, Sanja & Akbari, Vahid, 2022. "A review of applications of operational research in healthcare coordination in disaster management," European Journal of Operational Research, Elsevier, vol. 301(1), pages 1-17.
    19. Vusal Babashov & Antoine Sauré & Onur Ozturk & Jonathan Patrick, 2023. "Setting wait time targets in a multi‐priority patient setting," Production and Operations Management, Production and Operations Management Society, vol. 32(6), pages 1958-1974, June.
    20. Noa Zychlinski, 2023. "Applications of fluid models in service operations management," Queueing Systems: Theory and Applications, Springer, vol. 103(1), pages 161-185, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:278:y:2019:i:3:p:927-941. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.