IDEAS home Printed from https://ideas.repec.org/a/spr/snopef/v3y2022i1d10.1007_s43069-021-00114-8.html
   My bibliography  Save this article

Queueing Problems in Emergency Departments: A Review of Practical Approaches and Research Methodologies

Author

Listed:
  • Amir Elalouf

    (Bar-Ilan University)

  • Guy Wachtel

    (Ariel University)

Abstract

Problems related to patient scheduling and queueing in emergency departments are gaining increasing attention in theory, in the fields of operations research and emergency and healthcare services, and in practice. This paper aims to provide an extensive review of studies addressing queueing-related problems explicitly related to emergency departments. We have reviewed 229 articles and books spanning seven decades and have sought to organize the information they contain in a manner that is accessible and useful to researchers seeking to gain knowledge on specific aspects of such problems. We begin by presenting a historical overview of applications of queueing theory to healthcare-related problems. We subsequently elaborate on managerial approaches used to enhance efficiency in emergency departments. These approaches include bed management, fast-track, dynamic resource allocation, grouping/prioritization of patients, and triage approaches. Finally, we discuss scientific methodologies used to analyze and optimize these approaches: algorithms, priority models, queueing models, simulation, and statistical approaches.

Suggested Citation

  • Amir Elalouf & Guy Wachtel, 2022. "Queueing Problems in Emergency Departments: A Review of Practical Approaches and Research Methodologies," SN Operations Research Forum, Springer, vol. 3(1), pages 1-46, March.
  • Handle: RePEc:spr:snopef:v:3:y:2022:i:1:d:10.1007_s43069-021-00114-8
    DOI: 10.1007/s43069-021-00114-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s43069-021-00114-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s43069-021-00114-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S. Creemers & M. Lambrecht & N. Vandaele, 2007. "Queueing Models in Healthcare," Review of Business and Economic Literature, KU Leuven, Faculty of Economics and Business (FEB), Review of Business and Economic Literature, vol. 0(3), pages 471-498.
    2. Kimsy Gulhane, 2020. "Enhancing queuing efficiency using discrete event simulation," International Journal of Logistics Systems and Management, Inderscience Enterprises Ltd, vol. 36(4), pages 531-546.
    3. Linda Green, 2006. "Queueing Analysis in Healthcare," International Series in Operations Research & Management Science, in: Randolph W. Hall (ed.), Patient Flow: Reducing Delay in Healthcare Delivery, chapter 0, pages 281-307, Springer.
    4. L. Mayhew & D. Smith, 2008. "Using queuing theory to analyse the Government’s 4-h completion time target in Accident and Emergency departments," Health Care Management Science, Springer, vol. 11(1), pages 11-21, March.
    5. David Claudio & Gul E. Okudan, 2010. "Utility function-based patient prioritisation in the emergency department," European Journal of Industrial Engineering, Inderscience Enterprises Ltd, vol. 4(1), pages 59-77.
    6. J B Jun & S H Jacobson & J R Swisher, 1999. "Application of discrete-event simulation in health care clinics: A survey," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 50(2), pages 109-123, February.
    7. Li, Na & Stanford, David A. & Sharif, Azaz B. & Caron, Richard J. & Pardhan, Alim, 2019. "Optimising key performance indicator adherence with application to emergency department congestion," European Journal of Operational Research, Elsevier, vol. 272(1), pages 313-323.
    8. Galit B. Yom-Tov & Avishai Mandelbaum, 2014. "Erlang-R: A Time-Varying Queue with Reentrant Customers, in Support of Healthcare Staffing," Manufacturing & Service Operations Management, INFORMS, vol. 16(2), pages 283-299, May.
    9. Edward P. C. Kao & Grace G. Tung, 1981. "Bed Allocation in a Public Health Care Delivery System," Management Science, INFORMS, vol. 27(5), pages 507-520, May.
    10. Bell, Colin E. & Allen, David, 1969. "Optimal planning of an emergency ambulance service," Socio-Economic Planning Sciences, Elsevier, vol. 3(2), pages 95-101, August.
    11. T. Collings & C. Stoneman, 1976. "The M / M /∞ Queue with Varying Arrival and Departure Rates," Operations Research, INFORMS, vol. 24(4), pages 760-773, August.
    12. Di Lin & Jonathan Patrick & Fabrice Labeau, 2014. "Estimating the waiting time of multi-priority emergency patients with downstream blocking," Health Care Management Science, Springer, vol. 17(1), pages 88-99, March.
    13. Kuang Xu & Carri W. Chan, 2016. "Using Future Information to Reduce Waiting Times in the Emergency Department via Diversion," Manufacturing & Service Operations Management, INFORMS, vol. 18(3), pages 314-331, July.
    14. Luscombe, Ruth & Kozan, Erhan, 2016. "Dynamic resource allocation to improve emergency department efficiency in real time," European Journal of Operational Research, Elsevier, vol. 255(2), pages 593-603.
    15. Elalouf, Amir & Wachtel, Guy, 2016. "An alternative scheduling approach for improving emergency department performance," International Journal of Production Economics, Elsevier, vol. 178(C), pages 65-71.
    16. Soroush Saghafian & Wallace J. Hopp & Mark P. Van Oyen & Jeffrey S. Desmond & Steven L. Kronick, 2012. "Patient Streaming as a Mechanism for Improving Responsiveness in Emergency Departments," Operations Research, INFORMS, vol. 60(5), pages 1080-1097, October.
    17. R Ceglowski & L Churilov & J Wasserthiel, 2007. "Combining Data Mining and Discrete Event Simulation for a value-added view of a hospital emergency department," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(2), pages 246-254, February.
    18. Yichuan Ding & Eric Park & Mahesh Nagarajan & Eric Grafstein, 2019. "Patient Prioritization in Emergency Department Triage Systems: An Empirical Study of the Canadian Triage and Acuity Scale (CTAS)," Manufacturing & Service Operations Management, INFORMS, vol. 21(4), pages 723-741, October.
    19. F Gorunescu & S I McClean & P H Millard, 2002. "A queueing model for bed-occupancy management and planning of hospitals," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 53(1), pages 19-24, January.
    20. Randolph Hall, 2012. "Bed Assignment and Bed Management," International Series in Operations Research & Management Science, in: Randolph Hall (ed.), Handbook of Healthcare System Scheduling, chapter 0, pages 177-200, Springer.
    21. Otavio Bittencourt & Vedat Verter & Morty Yalovsky, 2018. "Hospital capacity management based on the queueing theory," International Journal of Productivity and Performance Management, Emerald Group Publishing Limited, vol. 67(2), pages 224-238, February.
    22. Panayiotopoulos, J. -C. & Vassilacopoulos, G., 1984. "Simulating hospital emergency departments queuing systems: (GI/G/m(t)) : (IHFF/N/[infinity])," European Journal of Operational Research, Elsevier, vol. 18(2), pages 250-258, November.
    23. McGuire, Thomas E., 1991. "DRGs: The state of the art, circa 1990," Health Policy, Elsevier, vol. 17(2), pages 97-119, March.
    24. Xiaodan Wu & Rongrong Xu & Juan Li & Mohammad T. Khasawneh, 2019. "A simulation study of bed allocation to reduce blocking probability in emergency departments: A case study in China," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 70(8), pages 1376-1390, August.
    25. Omar EL-Rifai & Thierry Garaix & Vincent Augusto & Xiaolan Xie, 2015. "A stochastic optimization model for shift scheduling in emergency departments," Health Care Management Science, Springer, vol. 18(3), pages 289-302, September.
    26. S C Brailsford & V A Lattimer & P Tarnaras & J C Turnbull, 2004. "Emergency and on-demand health care: modelling a large complex system," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(1), pages 34-42, January.
    27. Morton, Alec & Bevan, Gwyn, 2008. "What's in a wait: Contrasting management science and economic perspectives on waiting for emergency care," Health Policy, Elsevier, vol. 85(2), pages 207-217, February.
    28. Norman T. J. Bailey, 1954. "Queueing for Medical Care," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 3(3), pages 137-145, November.
    29. Avishai Mandelbaum & Petar Momčilović & Yulia Tseytlin, 2012. "On Fair Routing from Emergency Departments to Hospital Wards: QED Queues with Heterogeneous Servers," Management Science, INFORMS, vol. 58(7), pages 1273-1291, July.
    30. Arnoud Bruin & A. Rossum & M. Visser & G. Koole, 2007. "Modeling the emergency cardiac in-patient flow: an application of queuing theory," Health Care Management Science, Springer, vol. 10(2), pages 125-137, June.
    31. Devashish Das & Kalyan S. Pasupathy & Curtis B. Storlie & Mustafa Y. Sir, 2019. "Functional regression-based monitoring of quality of service in hospital emergency departments," IISE Transactions, Taylor & Francis Journals, vol. 51(9), pages 1012-1024, September.
    32. Robert J. Batt & Christian Terwiesch, 2015. "Waiting Patiently: An Empirical Study of Queue Abandonment in an Emergency Department," Management Science, INFORMS, vol. 61(1), pages 39-59, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexander Dudin & Sergey Dudin & Rosanna Manzo & Luigi Rarità, 2022. "Analysis of Multi-Server Priority Queueing System with Hysteresis Strategy of Server Reservation and Retrials," Mathematics, MDPI, vol. 10(20), pages 1-19, October.
    2. Konstantin Samouylov & Olga Dudina & Alexander Dudin, 2023. "Analysis of Multi-Server Queueing System with Flexible Priorities," Mathematics, MDPI, vol. 11(4), pages 1-22, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Xiaodan & Li, Juan & Chu, Chao-Hsien, 2019. "Modeling multi-stage healthcare systems with service interactions under blocking for bed allocation," European Journal of Operational Research, Elsevier, vol. 278(3), pages 927-941.
    2. Guihua Wang, 2022. "The Effect of Medicaid Expansion on Wait Time in the Emergency Department," Management Science, INFORMS, vol. 68(9), pages 6648-6665, September.
    3. Yuta Kanai & Hideaki Takagi, 2021. "Markov chain analysis for the neonatal inpatient flow in a hospital," Health Care Management Science, Springer, vol. 24(1), pages 92-116, March.
    4. Thomas J. Best & Burhaneddin Sandıkçı & Donald D. Eisenstein & David O. Meltzer, 2015. "Managing Hospital Inpatient Bed Capacity Through Partitioning Care into Focused Wings," Manufacturing & Service Operations Management, INFORMS, vol. 17(2), pages 157-176, May.
    5. Almehdawe, Eman & Jewkes, Beth & He, Qi-Ming, 2013. "A Markovian queueing model for ambulance offload delays," European Journal of Operational Research, Elsevier, vol. 226(3), pages 602-614.
    6. Michael F. Kamali & Tolga Tezcan & Ozlem Yildiz, 2019. "When to Use Provider Triage in Emergency Departments," Management Science, INFORMS, vol. 65(3), pages 1003-1019, March.
    7. Veneklaas, W. & Leeftink, A.G. & van Boekel, P.H.C.M. & Hans, E.W., 2021. "On the design, implementation, and feasibility of hospital admission services: The admission lounge case," Omega, Elsevier, vol. 100(C).
    8. Pengyi Shi & Mabel C. Chou & J. G. Dai & Ding Ding & Joe Sim, 2016. "Models and Insights for Hospital Inpatient Operations: Time-Dependent ED Boarding Time," Management Science, INFORMS, vol. 62(1), pages 1-28, January.
    9. Pak, Anton & Gannon, Brenda & Staib, Andrew, 2020. "Forecasting Waiting Time to Treatment for Emergency Department Patients," OSF Preprints d25se, Center for Open Science.
    10. Jaime González & Juan-Carlos Ferrer & Alejandro Cataldo & Luis Rojas, 2019. "A proactive transfer policy for critical patient flow management," Health Care Management Science, Springer, vol. 22(2), pages 287-303, June.
    11. Shuangchi He & Melvyn Sim & Meilin Zhang, 2019. "Data-Driven Patient Scheduling in Emergency Departments: A Hybrid Robust-Stochastic Approach," Management Science, INFORMS, vol. 65(9), pages 4123-4140, September.
    12. Willoughby, Keith A. & Chan, Benjamin T.B. & Marques, Shauna, 2016. "Using simulation to test ideas for improving speech language pathology services," European Journal of Operational Research, Elsevier, vol. 252(2), pages 657-664.
    13. Na Li & Nan Kong & Quanlin Li & Zhibin Jiang, 2017. "Evaluation of reverse referral partnership in a tiered hospital system – A queuing-based approach," International Journal of Production Research, Taylor & Francis Journals, vol. 55(19), pages 5647-5663, October.
    14. Tinglong Dai & Sridhar Tayur, 2020. "OM Forum—Healthcare Operations Management: A Snapshot of Emerging Research," Manufacturing & Service Operations Management, INFORMS, vol. 22(5), pages 869-887, September.
    15. Hui Zhang & Thomas J. Best & Anton Chivu & David O. Meltzer, 2020. "Simulation-based optimization to improve hospital patient assignment to physicians and clinical units," Health Care Management Science, Springer, vol. 23(1), pages 117-141, March.
    16. Junwen Wang & Jingshan Li & Patricia Howard, 2013. "A system model of work flow in the patient room of hospital emergency department," Health Care Management Science, Springer, vol. 16(4), pages 341-351, December.
    17. Almehdawe, Eman & Jewkes, Beth & He, Qi-Ming, 2016. "Analysis and optimization of an ambulance offload delay and allocation problem," Omega, Elsevier, vol. 65(C), pages 148-158.
    18. Avishai Mandelbaum & Petar Momčilović, 2017. "Personalized queues: the customer view, via a fluid model of serving least-patient first," Queueing Systems: Theory and Applications, Springer, vol. 87(1), pages 23-53, October.
    19. Bolandifar, Ehsan & DeHoratius, Nicole & Olsen, Tava, 2023. "Modeling abandonment behavior among patients," European Journal of Operational Research, Elsevier, vol. 306(1), pages 243-254.
    20. Niyirora, Jerome & Zhuang, Jun, 2017. "Fluid approximations and control of queues in emergency departments," European Journal of Operational Research, Elsevier, vol. 261(3), pages 1110-1124.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:snopef:v:3:y:2022:i:1:d:10.1007_s43069-021-00114-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.