IDEAS home Printed from https://ideas.repec.org/p/fth/lavaen/9127.html
   My bibliography  Save this paper

Estimation des Modeles Probit Polytomiques: Un Survol des Techniques

Author

Listed:
  • Bolduc, D.
  • Kaci, M.

Abstract

The Multinomial Probit (MNP) model provides the most general framework to allow for interdependent alternatives in discrete choice analysis. The primary impediment to this methodology is related to the dimensionality of the response probabilities which are multifold normal integrals of about the size of the choice set. During the last two decades, numerous researches have been devoted to develop practical methodologies to replace these hard to compute choice probabilities in the estimation process. The main objective of this paper is to survey the major and the most important of these techniques. Parce qu’il admet des structures très générales d’interdépendance entre les modalités, le probit polytomique (MNP) fournit une des formes les plus intéressantes pour modéliser les choix discrets qui découlent d’une maximisation d’utilité aléatoire. L’obstacle majeur et bien connu dans l’estimation de ce type de modèle tient à la complexité que prennent les calculs lorsque le nombre de modalités considérées est élevé. Cette situation est due essentiellement à la présence d’intégrales normales multidimensionnelles qui définissent les probabilités de sélection. Au cours des deux dernières décennies, de nombreux efforts ont été effectués visant à produire des méthodes qui permettent de contourner les difficultés de calcul liées à l’estimation des modèles probit polytomiques. L’objectif de ce texte consiste à produire un survol critique des principales méthodes mises de l’avant jusqu’à maintenant pour rendre opérationnel le cadre MNP. Nous espérons qu’il éclairera les praticiens de ces modèles quant au choix de technique d’estimation à favoriser au cours des prochaines années.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Bolduc, D. & Kaci, M., 1991. "Estimation des Modeles Probit Polytomiques: Un Survol des Techniques," Papers 9127, Laval - Recherche en Energie.
  • Handle: RePEc:fth:lavaen:9127
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Axel Borsch-Supan & Vassilis Hajivassiliou & Laurence J. Kotlikoff, 1992. "Health, Children, and Elderly Living Arrangements: A Multiperiod-Multinomial Probit Model with Unobserved Heterogeneity and Autocorrelated Errors," NBER Chapters, in: Topics in the Economics of Aging, pages 79-108, National Bureau of Economic Research, Inc.
    2. Vassilis A. Hajivassiliou & Daniel McFadden, 1990. "The Method of Simulated Scores for the Estimation of LDV Models with an Application to External Debt Crisis," Cowles Foundation Discussion Papers 967, Cowles Foundation for Research in Economics, Yale University.
    3. Berkovec, James & Stern, Steven, 1991. "Job Exit Behavior of Older Men," Econometrica, Econometric Society, vol. 59(1), pages 189-210, January.
    4. Joel L. Horowitz & Jürg M. Sparmann & Carlos F. Daganzo, 1982. "An Investigation of the Accuracy of the Clark Approximation for the Multinomial Probit Model," Transportation Science, INFORMS, vol. 16(3), pages 382-401, August.
    5. Christian Gouriéroux & Alain Monfort, 1991. "Simulation Based Inference in Models with Heterogeneity," Annals of Economics and Statistics, GENES, issue 20-21, pages 69-107.
    6. Hausman, Jerry A & Wise, David A, 1978. "A Conditional Probit Model for Qualitative Choice: Discrete Decisions Recognizing Interdependence and Heterogeneous Preferences," Econometrica, Econometric Society, vol. 46(2), pages 403-426, March.
    7. McFadden, Daniel, 1989. "A Method of Simulated Moments for Estimation of Discrete Response Models without Numerical Integration," Econometrica, Econometric Society, vol. 57(5), pages 995-1026, September.
    8. Bolduc, D. & Kaci, M., 1991. "Multinomial Probit Models with Factor-Based Autoregressive Errors: A Computationally Efficient Estimation Approach," Papers 9118, Laval - Recherche en Energie.
    9. Pakes, Ariel & Pollard, David, 1989. "Simulation and the Asymptotics of Optimization Estimators," Econometrica, Econometric Society, vol. 57(5), pages 1027-1057, September.
    10. Borsch-Supan, Axel & Hajivassiliou, Vassilis A., 1993. "Smooth unbiased multivariate probability simulators for maximum likelihood estimation of limited dependent variable models," Journal of Econometrics, Elsevier, vol. 58(3), pages 347-368, August.
    11. Charles E. Clark, 1961. "The Greatest of a Finite Set of Random Variables," Operations Research, INFORMS, vol. 9(2), pages 145-162, April.
    12. repec:adr:anecst:y:1991:i:20-21:p:04 is not listed on IDEAS
    13. Vassilis A. Hajivassiliou & Daniel L. McFadden, 1998. "The Method of Simulated Scores for the Estimation of LDV Models," Econometrica, Econometric Society, vol. 66(4), pages 863-896, July.
    14. Butler, J S & Moffitt, Robert, 1982. "A Computationally Efficient Quadrature Procedure for the One-Factor Multinomial Probit Model," Econometrica, Econometric Society, vol. 50(3), pages 761-764, May.
    15. Stern, Steven, 1992. "A Method for Smoothing Simulated Moments of Discrete Probabilities in Multinomial Probit Models," Econometrica, Econometric Society, vol. 60(4), pages 943-952, July.
    16. Gaundry, Marc J. I. & Dagenais, Marcel G., 1979. "The dogit model," Transportation Research Part B: Methodological, Elsevier, vol. 13(2), pages 105-111, June.
    17. Bolduc, Denis, 1992. "Generalized autoregressive errors in the multinomial probit model," Transportation Research Part B: Methodological, Elsevier, vol. 26(2), pages 155-170, April.
    18. Ben-Akiva, M. & Bolduc, D., 1991. "Multinomial Probit with Autoregressive Error Structure," Papers 9123, Laval - Recherche en Energie.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Samir Ghazouani & Mohamed Goaïed, 1993. "Analyse micro-économétrique de la demande de transport urbain pour la ville de Tunis," Économie et Prévision, Programme National Persée, vol. 108(2), pages 47-62.
    2. Moussa Dieng & Martine Audibert & Jean-Yves Le Hesran & Anta Ta Dial, 2015. "Déterminants de la demande de soins en milieu péri-urbain dans un contexte de subvention à Pikine, Sénégal," CERDI Working papers halshs-01027504, HAL.
    3. Anta TA DIAL & Moussa DIENG & Martine AUDIBERT & Jean-Yves LE HESRAN, 2014. "Déterminants de la demande de soins en milieu péri-urbain dans un contexte de subvention à Pikine, Sénégal," Working Papers 201415, CERDI.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hajivassiliou, Vassilis A. & Ruud, Paul A., 1986. "Classical estimation methods for LDV models using simulation," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 40, pages 2383-2441, Elsevier.
    2. Vassilis A. Hajivassiliou, 1991. "Simulation Estimation Methods for Limited Dependent Variable Models," Cowles Foundation Discussion Papers 1007, Cowles Foundation for Research in Economics, Yale University.
    3. Vassilis A. Hajivassiliou, 1993. "Simulating Normal Rectangle Probabilities and Their Derivatives: The Effects of Vectorization," Cowles Foundation Discussion Papers 1049, Cowles Foundation for Research in Economics, Yale University.
    4. Daniel Ackerberg, 2009. "A new use of importance sampling to reduce computational burden in simulation estimation," Quantitative Marketing and Economics (QME), Springer, vol. 7(4), pages 343-376, December.
    5. Inkmann, Joachim, 2000. "Misspecified heteroskedasticity in the panel probit model: A small sample comparison of GMM and SML estimators," Journal of Econometrics, Elsevier, vol. 97(2), pages 227-259, August.
    6. Kenneth Train, "undated". "Simulation Methods for Probit and Related Models Based on Convenient Error Partitioning," Working Papers _009, University of California at Berkeley, Econometrics Laboratory Software Archive.
    7. Borsch-Supan, Axel & Hajivassiliou, Vassilis A., 1993. "Smooth unbiased multivariate probability simulators for maximum likelihood estimation of limited dependent variable models," Journal of Econometrics, Elsevier, vol. 58(3), pages 347-368, August.
    8. Jacques Huguenin & Florian Pelgrin & Alberto Holly, 2009. "Estimation of multivariate probit models by exact maximum likelihood," Working Papers 0902, University of Lausanne, Institute of Health Economics and Management (IEMS).
    9. Vijverberg, Wim P. M., 1997. "Monte Carlo evaluation of multivariate normal probabilities," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 281-307.
    10. Denis Bolduc, "undated". "A Fast Maximum Simulated Likelihood Estimation Technique for NMP Models," Computing in Economics and Finance 1997 155, Society for Computational Economics.
    11. Yannis M. Ioannides & Vassilis A. Hajivassiliou, 2007. "Unemployment and liquidity constraints," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(3), pages 479-510.
    12. Yai, Tetsuo & Iwakura, Seiji & Morichi, Shigeru, 1997. "Multinomial probit with structured covariance for route choice behavior," Transportation Research Part B: Methodological, Elsevier, vol. 31(3), pages 195-207, June.
    13. Keane, Michael, 1993. "Simulation estimation for panel data models with limited dependent variables," MPRA Paper 53029, University Library of Munich, Germany.
    14. Paul Gertler & Roland Sturm & Bruce Davidson, 1994. "Information and the Demand for Supplemental Medicare Insurance," NBER Working Papers 4700, National Bureau of Economic Research, Inc.
    15. Lee, Lung-Fei, 1997. "Simulated maximum likelihood estimation of dynamic discrete choice statistical models some Monte Carlo results," Journal of Econometrics, Elsevier, vol. 82(1), pages 1-35.
    16. Axel Borsch-Supan & Vassilis Hajivassiliou & Laurence J. Kotlikoff, 1992. "Health, Children, and Elderly Living Arrangements: A Multiperiod-Multinomial Probit Model with Unobserved Heterogeneity and Autocorrelated Errors," NBER Chapters, in: Topics in the Economics of Aging, pages 79-108, National Bureau of Economic Research, Inc.
    17. Munizaga, Marcela A. & Heydecker, Benjamin G. & Ortúzar, Juan de Dios, 2000. "Representation of heteroskedasticity in discrete choice models," Transportation Research Part B: Methodological, Elsevier, vol. 34(3), pages 219-240, April.
    18. Denis Bolduc & Bernard Fortin & France Labrecque & Paul Lanoie, 1997. "Incentive Effects of Public Insurance Programs on the Occurence and the Composition of Workplace Injuries," CIRANO Working Papers 97s-24, CIRANO.
    19. Joachim Grammig & Reinhard Hujer & Michael Scheidler, 2005. "Discrete choice modelling in airline network management," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(4), pages 467-486, May.
    20. GRAMMIG, Joachim & HUJER, Reinhard & SCHEIDLER, Michael, 2001. "The econometrics of airline network management," LIDAM Discussion Papers CORE 2001055, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).

    More about this item

    Keywords

    econometrics ; economic models;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fth:lavaen:9127. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Krichel (email available below). General contact details of provider: https://edirc.repec.org/data/grlvlca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.