IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v570y2021ics0378437121000704.html
   My bibliography  Save this article

Speed distribution for interrupted flow facility under mixed traffic

Author

Listed:
  • Mondal, Satyajit
  • Gupta, Ankit

Abstract

Modeling of traffic parameters is a fundamental aspect of solving various traffic and transportation problems. Among them, the speed of the vehicle is often used to evaluate different traffic stream parameters. A detailed investigation of vehicular speed is extremely required in modeling various stream parameters both in theoretical and simulation-based approaches. Speed is a continuous random variable, and most of the studies proposed a normal distribution to describe speed distribution characteristics. However, in a mixed traffic stream, the speed distribution deviates from the normal distribution due to the heterogeneity. Therefore, an extensive investigation of speed distribution characteristics is carried out at signalized intersection under mixed traffic scenarios. A total number of 16 four-legged signalized intersections were selected from four different metro cities (Delhi, Kolkata, Bhubaneswar, and Jaipur) for detailed analysis of speed distribution. Six different distribution models, namely normal, log-normal, gamma, beta, burr, and generalized extreme value (GEV) distributions, are considered to find out the speed distribution model. It is observed that burr and GEV distributions are found most suitable to model empirical speed distribution for mixed traffic environment. Whereas, the GEV distribution shows above 90% fit percentage to describe the speed distribution for each location and each vehicle type. Besides, the normal and log-normal distributions are found least appropriate. Therefore, novel ranking method is proposed as per the goodness of fit result obtained by the Kolmogorov–Smirnov (K–S) statistical test. It is found that the GEV is proven to be appropriate fitting distribution among the other selected distribution model to represent speed distribution for each vehicle type as well for any vehicle composition level. Thus, the present study provides new statistics of speed distribution model that would be beneficial for researchers and engineers to choose most suitable distribution model in modeling vehicular speed at signalized intersections.

Suggested Citation

  • Mondal, Satyajit & Gupta, Ankit, 2021. "Speed distribution for interrupted flow facility under mixed traffic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 570(C).
  • Handle: RePEc:eee:phsmap:v:570:y:2021:i:c:s0378437121000704
    DOI: 10.1016/j.physa.2021.125798
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437121000704
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2021.125798?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ai, Wen-Huan & Shi, Zhong-Ke & Liu, Da-Wei, 2015. "Bifurcation analysis of a speed gradient continuum traffic flow model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 418-429.
    2. Kosun, Caglar & Ozdemir, Serhan, 2016. "A superstatistical model of vehicular traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 466-475.
    3. Singh, S K & Maddala, G S, 1976. "A Function for Size Distribution of Incomes," Econometrica, Econometric Society, vol. 44(5), pages 963-970, September.
    4. Ma, Liang & Chen, Bin & Wang, Xiaodong & Zhu, Zhengqiu & Wang, Rongxiao & Qiu, Xiaogang, 2019. "The analysis on the desired speed in social force model using a data driven approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 894-911.
    5. Xiao, Jianli & Wang, Zhonghao, 2018. "Traffic speed cloud maps: A new method for analyzing macroscopic traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 367-375.
    6. Shi, Wenbin & Shang, Pengjian & Wang, Jing, 2015. "Large deviations estimates for the multiscale analysis of traffic speed time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 562-570.
    7. Tipakornkiat, Chalat & Limanond, Thirayoot & Kim, Hyunmyung, 2012. "Determining an influencing area affecting walking speed on footpath: A case study of a footpath in CBD Bangkok, Thailand," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5453-5464.
    8. Bali, Turan G., 2003. "The generalized extreme value distribution," Economics Letters, Elsevier, vol. 79(3), pages 423-427, June.
    9. Ou, Hui & Tang, Tie-Qiao & Zhang, Jian & Zhou, Jie-Ming, 2018. "A car-following model accounting for probability distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 105-113.
    10. Bosina, Ernst & Weidmann, Ulrich, 2017. "Estimating pedestrian speed using aggregated literature data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 1-29.
    11. Yang, Haifei & Zhai, Xue & Zheng, Changjiang, 2018. "Effects of variable speed limits on traffic operation characteristics and environmental impacts under car-following scenarios: Simulations in the framework of Kerner’s three-phase traffic theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 567-577.
    12. Fu, Zhijian & Luo, Lin & Yang, Yue & Zhuang, Yifan & Zhang, Peitong & Yang, Lizhong & Yang, Hongtai & Ma, Jian & Zhu, Kongjin & Li, Yanlai, 2016. "Effect of speed matching on fundamental diagram of pedestrian flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 31-42.
    13. Tang, Tie-Qiao & Zhang, Jian & Liu, Kai, 2017. "A speed guidance model accounting for the driver’s bounded rationality at a signalized intersection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 45-52.
    14. Steffen, B. & Seyfried, A., 2010. "Methods for measuring pedestrian density, flow, speed and direction with minimal scatter," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(9), pages 1902-1910.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fang, Zhenyuan & Zhu, Shichao & Fu, Xin & Liu, Fang & Huang, Helai & Tang, Jinjun, 2022. "Multivariate analysis of traffic flow using copula-based model at an isolated road intersection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 599(C).
    2. Bari, Chintaman Santosh & Chandra, Satish & Dhamaniya, Ashish, 2022. "Service headway distribution analysis of FASTag lanes under mixed traffic conditions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Zi-Xuan & Nakanishi, Wataru & Asakura, Yasuo, 2021. "Data-driven framework for the adaptive exit selection problem in pedestrian flow: Visual information based heuristics approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    2. Changtao-Jiang, & Rongjun-Cheng, & Hongxia-Ge,, 2019. "Mean-field flow difference model with consideration of on-ramp and off-ramp," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 465-476.
    3. Mira Küpper & Armin Seyfried, 2020. "Analysis of Space Usage on Train Station Platforms Based on Trajectory Data," Sustainability, MDPI, vol. 12(20), pages 1-17, October.
    4. Sun, Fengxin & Wang, Jufeng & Cheng, Rongjun, 2019. "An improved anisotropic continuum model considering the driver’s desire for steady driving," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1449-1462.
    5. Dickens, Richard & Machin, Stephen & Manning, Alan, 1998. "Estimating the effect of minimum wages on employment from the distribution of wages: A critical view," Labour Economics, Elsevier, vol. 5(2), pages 109-134, June.
    6. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
    7. Sarabia, José María, 2008. "A general definition of the Leimkuhler curve," Journal of Informetrics, Elsevier, vol. 2(2), pages 156-163.
    8. Fabio Clementi & Mauro Gallegati & Giorgio Kaniadakis, 2010. "A model of personal income distribution with application to Italian data," Empirical Economics, Springer, vol. 39(2), pages 559-591, October.
    9. Fabio Fiorillo & Agnese Sacchi, 2012. "The Political Economy of the Standard Level of Services: The Role of Income Distribution," CESifo Working Paper Series 3696, CESifo.
    10. van den Berg, Gerard J., 2007. "On the uniqueness of optimal prices set by monopolistic sellers," Journal of Econometrics, Elsevier, vol. 141(2), pages 482-491, December.
    11. Sigurd Galaasen & Rustam Jamilov & Hélène Rey & Ragnar Juelsrud, 2020. "Granular credit risk," Working Paper 2020/15, Norges Bank.
    12. Sherrick, Bruce J. & Forster, D. Lynn & Irwin, Scott H., 1990. "The Calibration Of Expected Soybean Price Distributions: An Option Based Approach," 1990 Annual meeting, August 5-8, Vancouver, Canada 270919, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    13. Masato Okamoto, 2014. "Interpolating the Lorenz Curve: Methods to Preserve Shape and Remain Consistent with the Concentration Curves for Components," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 60(2), pages 349-384, June.
    14. Paul Gregg & Lindsey Macmillan & Claudia Vittori, 2017. "Moving Towards Estimating Sons' Lifetime Intergenerational Economic Mobility in the UK," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 79(1), pages 79-100, February.
    15. Ji, Jingwei & Lu, Ligang & Jin, Zihao & Wei, Shoupeng & Ni, Lu, 2018. "A cellular automata model for high-density crowd evacuation using triangle grids," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 1034-1045.
    16. Cowell, Frank A. & Flachaire, Emmanuel, 2007. "Income distribution and inequality measurement: The problem of extreme values," Journal of Econometrics, Elsevier, vol. 141(2), pages 1044-1072, December.
    17. Dorothée Boccanfuso & Bernard Decaluwé & Luc Savard, 2008. "Poverty, income distribution and CGE micro-simulation modeling: Does the functional form of distribution matter?," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 6(2), pages 149-184, June.
    18. Ekaterina Selezneva & Philippe Van Kerm, 2016. "A distribution-sensitive examination of the gender wage gap in Germany," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 14(1), pages 21-40, March.
    19. Keighley, Tim & Longden, Thomas & Mathew, Supriya & Trück, Stefan, 2014. "Quantifying Catastrophic and Climate Impacted Hazards Based on Local Expert Opinions," Climate Change and Sustainable Development 189171, Fondazione Eni Enrico Mattei (FEEM).
    20. Vladimir Hlasny & Paolo Verme, 2018. "Top Incomes and Inequality Measurement: A Comparative Analysis of Correction Methods Using the EU SILC Data," Econometrics, MDPI, vol. 6(2), pages 1-21, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:570:y:2021:i:c:s0378437121000704. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.