IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v525y2019icp894-911.html
   My bibliography  Save this article

The analysis on the desired speed in social force model using a data driven approach

Author

Listed:
  • Ma, Liang
  • Chen, Bin
  • Wang, Xiaodong
  • Zhu, Zhengqiu
  • Wang, Rongxiao
  • Qiu, Xiaogang

Abstract

In this paper, the desired speed, one of the parameters of the social force model, is recognized as having large influences on the performance of the model. However, there is a gap in giving strategies of assigning the desired speed to make the social force model produce reliable results. To bridge the gap, firstly, not only six strategies for assigning the desired speed of the social force model are reviewed, but also three more strategies are proposed for the first time by analyzing the experimental pedestrian flow trajectories. Secondly, a framework, which is used to fairly compare simulation models given the reference data, is extended to compare the overall nine strategies of assigning desired speed of the social force model. Thirdly, the comparisons are conducted in a corridor scenario with three different kinds of typical density of pedestrian flow. Based on the simulation results, it is found that the density of the pedestrian flow acts as an effective indicator for the complexity of pedestrian dynamics. Furthermore, it is shown that the degree of heterogeneity of the desired speed among pedestrians determines the performance of the social force models. As a result, the recommendations are given on choosing the strategies of assigning the desired speed according to the different background of applications.

Suggested Citation

  • Ma, Liang & Chen, Bin & Wang, Xiaodong & Zhu, Zhengqiu & Wang, Rongxiao & Qiu, Xiaogang, 2019. "The analysis on the desired speed in social force model using a data driven approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 894-911.
  • Handle: RePEc:eee:phsmap:v:525:y:2019:i:c:p:894-911
    DOI: 10.1016/j.physa.2019.03.087
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843711930322X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.03.087?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lei, Wenjun & Li, Angui & Gao, Ran & Zhou, Ning & Mei, Sen & Tian, Zhenguo, 2012. "Experimental study and numerical simulation of evacuation from a dormitory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(21), pages 5189-5196.
    2. Anders Johansson & Dirk Helbing & Pradyumn K. Shukla, 2007. "Specification Of The Social Force Pedestrian Model By Evolutionary Adjustment To Video Tracking Data," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 10(supp0), pages 271-288.
    3. Dirk Helbing & Illés Farkas & Tamás Vicsek, 2000. "Simulating dynamical features of escape panic," Nature, Nature, vol. 407(6803), pages 487-490, September.
    4. Peng, Bo & Liu, Bo & Zhang, Fu-Yi & Wang, Ling, 2009. "Differential evolution algorithm-based parameter estimation for chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2110-2118.
    5. Lei, Wenjun & Li, Angui & Gao, Ran & Hao, Xinpeng & Deng, Baoshun, 2012. "Simulation of pedestrian crowds’ evacuation in a huge transit terminal subway station," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5355-5365.
    6. Biswas, Partha P. & Suganthan, P.N. & Wu, Guohua & Amaratunga, Gehan A.J., 2019. "Parameter estimation of solar cells using datasheet information with the application of an adaptive differential evolution algorithm," Renewable Energy, Elsevier, vol. 132(C), pages 425-438.
    7. Hou, Lei & Liu, Jian-Guo & Pan, Xue & Wang, Bing-Hong, 2014. "A social force evacuation model with the leadership effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 400(C), pages 93-99.
    8. Wan, Jiahui & Sui, Jie & Yu, Hua, 2014. "Research on evacuation in the subway station in China based on the Combined Social Force Model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 394(C), pages 33-46.
    9. Xu Chen & Martin Treiber & Venkatesan Kanagaraj & Haiying Li, 2018. "Social force models for pedestrian traffic – state of the art," Transport Reviews, Taylor & Francis Journals, vol. 38(5), pages 625-653, September.
    10. Liu, Chi & Song, Weiguo & Fu, Libi & Lian, Liping & Lo, Siuming, 2017. "Experimental study on relaxation time in direction changing movement," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 44-52.
    11. Liu, Qian, 2018. "A social force model for the crowd evacuation in a terrorist attack," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 315-330.
    12. Dirk Helbing & Lubos Buzna & Anders Johansson & Torsten Werner, 2005. "Self-Organized Pedestrian Crowd Dynamics: Experiments, Simulations, and Design Solutions," Transportation Science, INFORMS, vol. 39(1), pages 1-24, February.
    13. Lei, Wenjun & Li, Angui & Gao, Ran, 2013. "Effect of varying two key parameters in simulating evacuation for a dormitory in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(1), pages 79-88.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Qiujia & Lu, Linjun & Zhang, Yijing & Hu, Miaoqing, 2022. "Modeling the dynamics of pedestrian evacuation in a complex environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    2. Yongqing Guo & Siyuan Ma & Fulu Wei & Liqun Lu & Feng Sun & Jie Wang, 2022. "Analysis of Behavior Characteristics for Pedestrian Twice-Crossing at Signalized Intersections Based on an Improved Social Force Model," Sustainability, MDPI, vol. 14(4), pages 1-17, February.
    3. Xianing Wang & Zhan Zhang & Ying Wang & Jun Yang & Linjun Lu, 2022. "A Study on Safety Evaluation of Pedestrian Flows Based on Partial Impact Dynamics by Real-Time Data in Subway Stations," Sustainability, MDPI, vol. 14(16), pages 1-19, August.
    4. Ma, Liang & Chen, Bin & Chen, Lidong & Xu, Xiaoping & Liu, Sikai & Liu, Xiaocheng, 2022. "Data driven analysis of the desired speed in ordinary differential equation based pedestrian simulation models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    5. Yaqi Liu & Xiaoyuan Wang, 2020. "Differences in Driving Intention Transitions Caused by Driver’s Emotion Evolutions," IJERPH, MDPI, vol. 17(19), pages 1-22, September.
    6. Mondal, Satyajit & Gupta, Ankit, 2021. "Speed distribution for interrupted flow facility under mixed traffic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 570(C).
    7. Zhou, Zi-Xuan & Nakanishi, Wataru & Asakura, Yasuo, 2021. "Data-driven framework for the adaptive exit selection problem in pedestrian flow: Visual information based heuristics approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kefan Xie & Benbu Liang & Yu Song & Xueqin Dong, 2019. "Analysis of Walking-Edge Effect in Train Station Evacuation Scenarios: A Sustainable Transportation Perspective," Sustainability, MDPI, vol. 11(24), pages 1-16, December.
    2. Liu, Qiujia & Lu, Linjun & Zhang, Yijing & Hu, Miaoqing, 2022. "Modeling the dynamics of pedestrian evacuation in a complex environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    3. Kang, Zengxin & Zhang, Lei & Li, Kun, 2019. "An improved social force model for pedestrian dynamics in shipwrecks," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 355-362.
    4. Shang, Hua-Yan & Huang, Hai-Jun & Zhang, Yi-Ming, 2015. "An extended mobile lattice gas model allowing pedestrian step size variable," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 283-293.
    5. Tian, Xiaoyong & Li, Kun & Kang, Zengxin & Peng, Yun & Cui, Hongjun, 2020. "Simulating the dynamical features of evacuation governed by periodic vibrations," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    6. Liu, Qian, 2018. "A social force model for the crowd evacuation in a terrorist attack," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 315-330.
    7. Guo, Ren-Yong, 2014. "Simulation of spatial and temporal separation of pedestrian counter flow through a bottleneck," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 428-439.
    8. Ziyou Gao & Yunchao Qu & Xingang Li & Jiancheng Long & Hai-Jun Huang, 2014. "Simulating the Dynamic Escape Process in Large Public Places," Operations Research, INFORMS, vol. 62(6), pages 1344-1357, December.
    9. Hänseler, Flurin S. & Bierlaire, Michel & Farooq, Bilal & Mühlematter, Thomas, 2014. "A macroscopic loading model for time-varying pedestrian flows in public walking areas," Transportation Research Part B: Methodological, Elsevier, vol. 69(C), pages 60-80.
    10. Liu, Qian, 2018. "The effect of dedicated exit on the evacuation of heterogeneous pedestrians," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 305-323.
    11. Heng Wang & Tiandong Xu & Feng Li, 2021. "A Novel Emergency Evacuation Model of Subway Station Passengers Considering Personality Traits," Sustainability, MDPI, vol. 13(18), pages 1-15, September.
    12. Wang, Lei & Zhang, Qian & Cai, Yun & Zhang, Jianlin & Ma, Qingguo, 2013. "Simulation study of pedestrian flow in a station hall during the Spring Festival travel rush," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(10), pages 2470-2478.
    13. Johansson, Fredrik & Peterson, Anders & Tapani, Andreas, 2015. "Waiting pedestrians in the social force model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 95-107.
    14. Zhao, Yongxiang & Li, Meifang & Lu, Xin & Tian, Lijun & Yu, Zhiyong & Huang, Kai & Wang, Yana & Li, Ting, 2017. "Optimal layout design of obstacles for panic evacuation using differential evolution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 175-194.
    15. Subramanian, Gayathri Harihara & Choubey, Nipun & Verma, Ashish, 2022. "Modelling and simulating serpentine group behaviour in crowds using modified social force model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    16. Sun, Yutong & Liu, Hong, 2021. "Crowd evacuation simulation method combining the density field and social force model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    17. Khamis, Nurulaqilla & Selamat, Hazlina & Ismail, Fatimah Sham & Lutfy, Omar Farouq & Haniff, Mohamad Fadzli & Nordin, Ili Najaa Aimi Mohd, 2020. "Optimized exit door locations for a safer emergency evacuation using crowd evacuation model and artificial bee colony optimization," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    18. Ma, Yi & Yuen, Richard Kwok Kit & Lee, Eric Wai Ming, 2016. "Effective leadership for crowd evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 333-341.
    19. Haghani, Milad, 2021. "The knowledge domain of crowd dynamics: Anatomy of the field, pioneering studies, temporal trends, influential entities and outside-domain impact," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    20. Han, Yanbin & Liu, Hong, 2017. "Modified social force model based on information transmission toward crowd evacuation simulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 499-509.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:525:y:2019:i:c:p:894-911. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.