IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v483y2017icp83-93.html
   My bibliography  Save this article

Pricing foreign equity option under stochastic volatility tempered stable Lévy processes

Author

Listed:
  • Gong, Xiaoli
  • Zhuang, Xintian

Abstract

Considering that financial assets returns exhibit leptokurtosis, asymmetry properties as well as clustering and heteroskedasticity effect, this paper substitutes the logarithm normal jumps in Heston stochastic volatility model by the classical tempered stable (CTS) distribution and normal tempered stable (NTS) distribution to construct stochastic volatility tempered stable Lévy processes (TSSV) model. The TSSV model framework permits infinite activity jump behaviors of return dynamics and time varying volatility consistently observed in financial markets through subordinating tempered stable process to stochastic volatility process, capturing leptokurtosis, fat tailedness and asymmetry features of returns. By employing the analytical characteristic function and fast Fourier transform (FFT) technique, the formula for probability density function (PDF) of TSSV returns is derived, making the analytical formula for foreign equity option (FEO) pricing available. High frequency financial returns data are employed to verify the effectiveness of proposed models in reflecting the stylized facts of financial markets. Numerical analysis is performed to investigate the relationship between the corresponding parameters and the implied volatility of foreign equity option.

Suggested Citation

  • Gong, Xiaoli & Zhuang, Xintian, 2017. "Pricing foreign equity option under stochastic volatility tempered stable Lévy processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 83-93.
  • Handle: RePEc:eee:phsmap:v:483:y:2017:i:c:p:83-93
    DOI: 10.1016/j.physa.2017.04.147
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437117304570
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2017.04.147?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dilip B. Madan & Peter P. Carr & Eric C. Chang, 1998. "The Variance Gamma Process and Option Pricing," Review of Finance, European Finance Association, vol. 2(1), pages 79-105.
    2. El Ouadghiri, Imane & Uctum, Remzi, 2016. "Jumps in equilibrium prices and asymmetric news in foreign exchange markets," Economic Modelling, Elsevier, vol. 54(C), pages 218-234.
    3. Sven Klingler & Young Shin Kim & Svetlozar T. Rachev & Frank J. Fabozzi, 2013. "Option pricing with time-changed L�vy processes," Applied Financial Economics, Taylor & Francis Journals, vol. 23(15), pages 1231-1238, August.
    4. Xiao, Weilin & Zhang, Weiguo & Zhang, Xili & Chen, Xiaoyan, 2014. "The valuation of equity warrants under the fractional Vasicek process of the short-term interest rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 394(C), pages 320-337.
    5. Kim, Young Shin & Rachev, Svetlozar T. & Bianchi, Michele Leonardo & Mitov, Ivan & Fabozzi, Frank J., 2011. "Time series analysis for financial market meltdowns," Journal of Banking & Finance, Elsevier, vol. 35(8), pages 1879-1891, August.
    6. Roger Lord & Christian Kahl, 2006. "Optimal Fourier Inversion in Semi-analytical Option Pricing," Tinbergen Institute Discussion Papers 06-066/2, Tinbergen Institute, revised 05 Jun 2007.
    7. Zaevski, Tsvetelin S. & Kim, Young Shin & Fabozzi, Frank J., 2014. "Option pricing under stochastic volatility and tempered stable Lévy jumps," International Review of Financial Analysis, Elsevier, vol. 31(C), pages 101-108.
    8. Todorov, Viktor, 2011. "Econometric analysis of jump-driven stochastic volatility models," Journal of Econometrics, Elsevier, vol. 160(1), pages 12-21, January.
    9. Aït-Sahalia, Yacine & Jacod, Jean & Li, Jia, 2012. "Testing for jumps in noisy high frequency data," Journal of Econometrics, Elsevier, vol. 168(2), pages 207-222.
    10. Bjørn Eraker, 2004. "Do Stock Prices and Volatility Jump? Reconciling Evidence from Spot and Option Prices," Journal of Finance, American Finance Association, vol. 59(3), pages 1367-1404, June.
    11. Gajda, Janusz & Wyłomańska, Agnieszka, 2013. "Tempered stable Lévy motion driven by stable subordinator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(15), pages 3168-3176.
    12. Rosinski, Jan, 2007. "Tempering stable processes," Stochastic Processes and their Applications, Elsevier, vol. 117(6), pages 677-707, June.
    13. Peter Carr & Helyette Geman, 2002. "The Fine Structure of Asset Returns: An Empirical Investigation," The Journal of Business, University of Chicago Press, vol. 75(2), pages 305-332, April.
    14. Gong, Xiaoli & Zhuang, Xintian, 2016. "Option pricing for stochastic volatility model with infinite activity Lévy jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 455(C), pages 1-10.
    15. Küchler, Uwe & Tappe, Stefan, 2013. "Tempered stable distributions and processes," Stochastic Processes and their Applications, Elsevier, vol. 123(12), pages 4256-4293.
    16. Shian‐Chang Huang & Mao‐Wei Hung, 2005. "Pricing foreign equity options under Lévy processes," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 25(10), pages 917-944, October.
    17. Mark Broadie & Özgür Kaya, 2006. "Exact Simulation of Stochastic Volatility and Other Affine Jump Diffusion Processes," Operations Research, INFORMS, vol. 54(2), pages 217-231, April.
    18. Carr, Peter & Wu, Liuren, 2004. "Time-changed Levy processes and option pricing," Journal of Financial Economics, Elsevier, vol. 71(1), pages 113-141, January.
    19. Ruan, Xinfeng & Zhu, Wenli & Huang, Jiexiang & Zhang, Jin E., 2016. "Equilibrium asset pricing under the Lévy process with stochastic volatility and moment risk premiums," Economic Modelling, Elsevier, vol. 54(C), pages 326-338.
    20. Menn, Christian & Rachev, Svetlozar T., 2006. "Calibrated FFT-based density approximations for [alpha]-stable distributions," Computational Statistics & Data Analysis, Elsevier, vol. 50(8), pages 1891-1904, April.
    21. Sun, Qi & Xu, Weidong, 2015. "Pricing foreign equity option with stochastic volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 89-100.
    22. Matthias Scherer & Svetlozar T. Rachev & Young Shin Kim & Frank J. Fabozzi, 2012. "Approximation of skewed and leptokurtic return distributions," Applied Financial Economics, Taylor & Francis Journals, vol. 22(16), pages 1305-1316, August.
    23. Jun Ma, 2009. "Pricing Foreign Equity Options with Stochastic Correlation and Volatility," Annals of Economics and Finance, Society for AEF, vol. 10(2), pages 303-327, November.
    24. Gong, Xiaoli & Zhuang, Xintian, 2017. "American option valuation under time changed tempered stable Lévy processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 57-68.
    25. Ole E. Barndorff-Nielsen, 1997. "Processes of normal inverse Gaussian type," Finance and Stochastics, Springer, vol. 2(1), pages 41-68.
    26. Bates, David S., 2000. "Post-'87 crash fears in the S&P 500 futures option market," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 181-238.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ma, Yong & Pan, Dongtao & Shrestha, Keshab & Xu, Weidong, 2020. "Pricing and hedging foreign equity options under Hawkes jump–diffusion processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    2. Molina-Muñoz, Jesús & Mora-Valencia, Andrés & Perote, Javier, 2020. "Market-crash forecasting based on the dynamics of the alpha-stable distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gong, Xiaoli & Zhuang, Xintian, 2017. "Measuring financial risk and portfolio reversion with time changed tempered stable Lévy processes," The North American Journal of Economics and Finance, Elsevier, vol. 40(C), pages 148-159.
    2. Gong, Xiaoli & Zhuang, Xintian, 2016. "Option pricing for stochastic volatility model with infinite activity Lévy jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 455(C), pages 1-10.
    3. Gong, Xiao-li & Zhuang, Xin-tian, 2016. "Option pricing and hedging for optimized Lévy driven stochastic volatility models," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 118-127.
    4. Gong, Xiaoli & Zhuang, Xintian, 2017. "American option valuation under time changed tempered stable Lévy processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 57-68.
    5. Sun, Qi & Xu, Weidong, 2015. "Pricing foreign equity option with stochastic volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 89-100.
    6. Slim, Skander, 2016. "On the source of stochastic volatility: Evidence from CAC40 index options during the subprime crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 63-76.
    7. Calvet, Laurent E. & Fisher, Adlai J., 2008. "Multifrequency jump-diffusions: An equilibrium approach," Journal of Mathematical Economics, Elsevier, vol. 44(2), pages 207-226, January.
    8. Jingzhi Huang & Liuren Wu, 2004. "Specification Analysis of Option Pricing Models Based on Time- Changed Levy Processes," Finance 0401002, University Library of Munich, Germany.
    9. Wenli Zhu & Xinfeng Ruan, 2019. "Pricing Swaps on Discrete Realized Higher Moments Under the Lévy Process," Computational Economics, Springer;Society for Computational Economics, vol. 53(2), pages 507-532, February.
    10. Bin Xie & Weiping Li & Nan Liang, 2021. "Pricing S&P 500 Index Options with L\'evy Jumps," Papers 2111.10033, arXiv.org, revised Nov 2021.
    11. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    12. Andras Fulop & Junye Li & Jun Yu, 2012. "Investigating Impacts of Self-Exciting Jumps in Returns and Volatility: A Bayesian Learning Approach," Global COE Hi-Stat Discussion Paper Series gd12-264, Institute of Economic Research, Hitotsubashi University.
    13. Feng, Chengxiao & Tan, Jie & Jiang, Zhenyu & Chen, Shuang, 2020. "A generalized European option pricing model with risk management," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    14. Gonçalo Faria & João Correia-da-Silva, 2014. "A closed-form solution for options with ambiguity about stochastic volatility," Review of Derivatives Research, Springer, vol. 17(2), pages 125-159, July.
    15. Carr, Peter & Wu, Liuren, 2007. "Stochastic skew in currency options," Journal of Financial Economics, Elsevier, vol. 86(1), pages 213-247, October.
    16. Slim, Skander & Koubaa, Yosra & BenSaïda, Ahmed, 2017. "Value-at-Risk under Lévy GARCH models: Evidence from global stock markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 46(C), pages 30-53.
    17. Massoud Heidari & Liuren WU, 2002. "Are Interest Rate Derivatives Spanned by the Term Structure of Interest Rates?," Finance 0207013, University Library of Munich, Germany.
    18. Lazar, Emese & Qi, Shuyuan, 2022. "Model risk in the over-the-counter market," European Journal of Operational Research, Elsevier, vol. 298(2), pages 769-784.
    19. Li, Junye & Favero, Carlo & Ortu, Fulvio, 2012. "A spectral estimation of tempered stable stochastic volatility models and option pricing," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3645-3658.
    20. Liuren Wu, 2006. "Dampened Power Law: Reconciling the Tail Behavior of Financial Security Returns," The Journal of Business, University of Chicago Press, vol. 79(3), pages 1445-1474, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:483:y:2017:i:c:p:83-93. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.