IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v479y2017icp309-323.html
   My bibliography  Save this article

Pricing real estate index options under stochastic interest rates

Author

Listed:
  • Gong, Pu
  • Dai, Jun

Abstract

Real estate derivatives as new financial instruments are not merely risk management tools but also provide a novel way to gain exposure to real estate assets without buying or selling the physical assets. Although real estate derivatives market has exhibited a rapid development in recent years, the valuation challenge of real estate derivatives remains a great obstacle for further development in this market. In this paper, we derive a partial differential equation contingent on a real estate index in a stochastic interest rate environment and propose a modified finite difference method that adopts the non-uniform grids to solve this problem. Numerical results confirm the efficiency of the method and indicate that constant interest rate models lead to the mispricing of options and the effects of stochastic interest rates on option prices depend on whether the term structure of interest rates is rising or falling. Finally, we have investigated and compared the different effects of stochastic interest rates on European and American option prices.

Suggested Citation

  • Gong, Pu & Dai, Jun, 2017. "Pricing real estate index options under stochastic interest rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 309-323.
  • Handle: RePEc:eee:phsmap:v:479:y:2017:i:c:p:309-323
    DOI: 10.1016/j.physa.2017.03.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437117302327
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2017.03.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Melanie Cao & Jason Wei, 2010. "Valuation of housing index derivatives," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 30(7), pages 660-688, July.
    2. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    3. Geske, Robert & Shastri, Kuldeep, 1985. "Valuation by Approximation: A Comparison of Alternative Option Valuation Techniques," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 20(1), pages 45-71, March.
    4. Case, Karl E & Shiller, Robert J, 1989. "The Efficiency of the Market for Single-Family Homes," American Economic Review, American Economic Association, vol. 79(1), pages 125-137, March.
    5. Björk, Tomas & Clapham, Eric, 2002. "A Note on the Pricing of Real Estate Index Linked Swaps," SSE/EFI Working Paper Series in Economics and Finance 492, Stockholm School of Economics.
    6. Shiller, Robert J., 1993. "The theory of index-based futures and options markets," Estudios Económicos, El Colegio de México, Centro de Estudios Económicos, vol. 8(2), pages 163-178.
    7. Dibeh, Ghassan & Harmanani, Haidar M., 2007. "Option pricing during post-crash relaxation times," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 380(C), pages 357-365.
    8. Medvedev, Alexey & Scaillet, Olivier, 2010. "Pricing American options under stochastic volatility and stochastic interest rates," Journal of Financial Economics, Elsevier, vol. 98(1), pages 145-159, October.
    9. Frank J. Fabozzi & Robert J. Shiller & Radu S. Tunaru, 2012. "A Pricing Framework for Real Estate Derivatives," European Financial Management, European Financial Management Association, vol. 18(5), pages 762-789, November.
    10. Hull, John & White, Alan, 1990. "Valuing Derivative Securities Using the Explicit Finite Difference Method," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 25(1), pages 87-100, March.
    11. Rad, Jamal Amani & Parand, Kourosh & Ballestra, Luca Vincenzo, 2015. "Pricing European and American options by radial basis point interpolation," Applied Mathematics and Computation, Elsevier, vol. 251(C), pages 363-377.
    12. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    13. Gong, Pu & He, Zhiwei & Zhu, Song-Ping, 2006. "Pricing convertible bonds based on a multi-stage compound-option model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 366(C), pages 449-462.
    14. Chockalingam, Arun & Muthuraman, Kumar, 2015. "An approximate moving boundary method for American option pricing," European Journal of Operational Research, Elsevier, vol. 240(2), pages 431-438.
    15. Persson, Jonas & von Sydow, Lina, 2010. "Pricing American options using a space-time adaptive finite difference method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(9), pages 1922-1935.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gong, Pu & Zou, Dong & Wang, Jiayue, 2018. "Pricing and simulation for real estate index options: Radial basis point interpolation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 500(C), pages 177-188.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gong, Pu & Zou, Dong & Wang, Jiayue, 2018. "Pricing and simulation for real estate index options: Radial basis point interpolation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 500(C), pages 177-188.
    2. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    3. Frontczak, Robert & Rostek, Stefan, 2015. "Modeling loss given default with stochastic collateral," Economic Modelling, Elsevier, vol. 44(C), pages 162-170.
    4. Gerald Buetow, Jr. & Joseph Albert, 1998. "The Pricing of Embedded Options in Real Estate Lease Contracts," Journal of Real Estate Research, American Real Estate Society, vol. 15(3), pages 253-266.
    5. Anlong Li, 1992. "Binomial approximation in financial models: computational simplicity and convergence," Working Papers (Old Series) 9201, Federal Reserve Bank of Cleveland.
    6. Shiller, Robert J. & Wojakowski, Rafal M. & Ebrahim, M. Shahid & Shackleton, Mark B., 2019. "Continuous Workout Mortgages: Efficient pricing and systemic implications," Journal of Economic Behavior & Organization, Elsevier, vol. 157(C), pages 244-274.
    7. Somayeh Abdi-Mazraeh & Ali Khani & Safar Irandoust-Pakchin, 2020. "Multiple Shooting Method for Solving Black–Scholes Equation," Computational Economics, Springer;Society for Computational Economics, vol. 56(4), pages 723-746, December.
    8. Kristensen, Dennis & Mele, Antonio, 2011. "Adding and subtracting Black-Scholes: A new approach to approximating derivative prices in continuous-time models," Journal of Financial Economics, Elsevier, vol. 102(2), pages 390-415.
    9. Xubiao He & Pu Gong, 2020. "A Radial Basis Function-Generated Finite Difference Method to Evaluate Real Estate Index Options," Computational Economics, Springer;Society for Computational Economics, vol. 55(3), pages 999-1019, March.
    10. Mark Broadie & Jérôme Detemple, 1996. "Recent Advances in Numerical Methods for Pricing Derivative Securities," CIRANO Working Papers 96s-17, CIRANO.
    11. Phelim Boyle & Yisong Tian, 1998. "An explicit finite difference approach to the pricing of barrier options," Applied Mathematical Finance, Taylor & Francis Journals, vol. 5(1), pages 17-43.
    12. Minqiang Li, 2010. "A quasi-analytical interpolation method for pricing American options under general multi-dimensional diffusion processes," Review of Derivatives Research, Springer, vol. 13(2), pages 177-217, July.
    13. Radu Tunaru, 2015. "Model Risk in Financial Markets:From Financial Engineering to Risk Management," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 9524, January.
    14. Zhongkai Liu & Tao Pang, 2016. "An efficient grid lattice algorithm for pricing American-style options," International Journal of Financial Markets and Derivatives, Inderscience Enterprises Ltd, vol. 5(1), pages 36-55.
    15. Mondher Bellalah, 2009. "Derivatives, Risk Management & Value," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 7175, January.
    16. Frank J. Fabozzi & Robert J. Shiller & Radu S. Tunaru, 2012. "A Pricing Framework for Real Estate Derivatives," European Financial Management, European Financial Management Association, vol. 18(5), pages 762-789, November.
    17. Christopher F. Baum & Olin Liu, 1994. "An Alternative Strategy for Estimation of a Nonlinear Model of the Term Structure of Interest Rates," Boston College Working Papers in Economics 275, Boston College Department of Economics.
    18. Ben-Ameur, Hatem & Breton, Michele & Karoui, Lotfi & L'Ecuyer, Pierre, 2007. "A dynamic programming approach for pricing options embedded in bonds," Journal of Economic Dynamics and Control, Elsevier, vol. 31(7), pages 2212-2233, July.
    19. Riadh Belhaj, 2006. "The Valuation of Options on Bonds with Default Risk," Multinational Finance Journal, Multinational Finance Journal, vol. 10(3-4), pages 277-306, September.
    20. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:479:y:2017:i:c:p:309-323. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.