IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v55y2020i3d10.1007_s10614-019-09924-9.html
   My bibliography  Save this article

A Radial Basis Function-Generated Finite Difference Method to Evaluate Real Estate Index Options

Author

Listed:
  • Xubiao He

    (Huazhong University of Science and Technology)

  • Pu Gong

    (Huazhong University of Science and Technology)

Abstract

The local radial basis functions (RBF) method is becoming increasingly popular as an alternative to the global version that suffers from ill-conditioning. The purpose of this paper is to design and describe the valuation of the real estate index options by a local RBF scheme based multiquadric radial basis function-generated finite difference (RBF-FD) method. As a generalized finite differencing scheme, the RBF-FD method functions without the need for underlying meshes to structure nodes. It offers high-order accuracy approximation and removes the difficulty of the ill-conditioned conventional global collocation methods. This paper employs an optimal variable shape parameter for the multiquadric basis functions at each grid point of the domain. Meanwhile, a local mesh refinement technique is adopted to deal with non-smooth payoffs of option. These techniques are effective and stable in improving the computational accuracy of the RBF-FD method. Several numerical experiments are presented and compared with the FD and compactly supported RBF methods to demonstrate the good performances of the proposed method. Lastly, the RBF-FD method is extended to price the American option of the real estate index.

Suggested Citation

  • Xubiao He & Pu Gong, 2020. "A Radial Basis Function-Generated Finite Difference Method to Evaluate Real Estate Index Options," Computational Economics, Springer;Society for Computational Economics, vol. 55(3), pages 999-1019, March.
  • Handle: RePEc:kap:compec:v:55:y:2020:i:3:d:10.1007_s10614-019-09924-9
    DOI: 10.1007/s10614-019-09924-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-019-09924-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-019-09924-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dong Zou & Pu Gong, 2017. "A Lattice Framework with Smooth Convergence for Pricing Real Estate Derivatives with Stochastic Interest Rate," The Journal of Real Estate Finance and Economics, Springer, vol. 55(2), pages 242-263, August.
    2. Shiller, Robert J., 1993. "The theory of index-based futures and options markets," Estudios Económicos, El Colegio de México, Centro de Estudios Económicos, vol. 8(2), pages 163-178.
    3. Min-Ku Lee, 2019. "Pricing Perpetual American Lookback Options Under Stochastic Volatility," Computational Economics, Springer;Society for Computational Economics, vol. 53(3), pages 1265-1277, March.
    4. Golbabai, Ahmad & Mohebianfar, Ehsan, 2017. "A new method for evaluating options based on multiquadric RBF-FD method," Applied Mathematics and Computation, Elsevier, vol. 308(C), pages 130-141.
    5. Su, LingDe, 2019. "A radial basis function (RBF)-finite difference (FD) method for the backward heat conduction problem," Applied Mathematics and Computation, Elsevier, vol. 354(C), pages 232-247.
    6. Frank J. Fabozzi & Robert J. Shiller & Radu S. Tunaru, 2012. "A Pricing Framework for Real Estate Derivatives," European Financial Management, European Financial Management Association, vol. 18(5), pages 762-789, November.
    7. Bertram During & Alexander Pitkin, 2018. "High-order compact finite difference scheme for option pricing in stochastic volatility with contemporaneous jump models," Papers 1810.13248, arXiv.org, revised Mar 2019.
    8. R. Kalantari & S. Shahmorad, 2019. "A Stable and Convergent Finite Difference Method for Fractional Black–Scholes Model of American Put Option Pricing," Computational Economics, Springer;Society for Computational Economics, vol. 53(1), pages 191-205, January.
    9. Reza Mollapourasl & Ali Fereshtian & Michèle Vanmaele, 2019. "Radial Basis Functions with Partition of Unity Method for American Options with Stochastic Volatility," Computational Economics, Springer;Society for Computational Economics, vol. 53(1), pages 259-287, January.
    10. Rad, Jamal Amani & Parand, Kourosh & Ballestra, Luca Vincenzo, 2015. "Pricing European and American options by radial basis point interpolation," Applied Mathematics and Computation, Elsevier, vol. 251(C), pages 363-377.
    11. Bertram During & Alexander Pitkin, 2017. "High-order compact finite difference scheme for option pricing in stochastic volatility jump models," Papers 1704.05308, arXiv.org, revised Feb 2019.
    12. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
    13. Brennan, Michael J. & Schwartz, Eduardo S., 1978. "Finite Difference Methods and Jump Processes Arising in the Pricing of Contingent Claims: A Synthesis," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 13(3), pages 461-474, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gong, Pu & Zou, Dong & Wang, Jiayue, 2018. "Pricing and simulation for real estate index options: Radial basis point interpolation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 500(C), pages 177-188.
    2. A. Golbabai & E. Mohebianfar, 2017. "A New Stable Local Radial Basis Function Approach for Option Pricing," Computational Economics, Springer;Society for Computational Economics, vol. 49(2), pages 271-288, February.
    3. Gong, Pu & Dai, Jun, 2017. "Pricing real estate index options under stochastic interest rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 309-323.
    4. Song-Ping Zhu & Xin-Jiang He, 2018. "A hybrid computational approach for option pricing," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(03), pages 1-16, September.
    5. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    6. Jin, Ting & Yang, Xiangfeng, 2021. "Monotonicity theorem for the uncertain fractional differential equation and application to uncertain financial market," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 203-221.
    7. Golbabai, Ahmad & Mohebianfar, Ehsan, 2017. "A new method for evaluating options based on multiquadric RBF-FD method," Applied Mathematics and Computation, Elsevier, vol. 308(C), pages 130-141.
    8. Lin, Chung-Gee & Yang, Wei-Ning & Chen, Shu-Chuan, 2014. "Analyses of retirement benefits with options," Economic Modelling, Elsevier, vol. 36(C), pages 130-135.
    9. Rubinstein, Mark, 2000. "On the Relation Between Binomial and Trinomial Option Pricing Models," Research Program in Finance, Working Paper Series qt3bw450n0, Research Program in Finance, Institute for Business and Economic Research, UC Berkeley.
    10. Dangl, Thomas & Wirl, Franz, 2004. "Investment under uncertainty: calculating the value function when the Bellman equation cannot be solved analytically," Journal of Economic Dynamics and Control, Elsevier, vol. 28(7), pages 1437-1460, April.
    11. Manuel Moreno & Javier Navas, 2003. "On the Robustness of Least-Squares Monte Carlo (LSM) for Pricing American Derivatives," Review of Derivatives Research, Springer, vol. 6(2), pages 107-128, May.
    12. Dimitrakopoulos, Roussos G. & Abdel Sabour, Sabry A., 2007. "Evaluating mine plans under uncertainty: Can the real options make a difference?," Resources Policy, Elsevier, vol. 32(3), pages 116-125, September.
    13. Mark Broadie & Jérôme Detemple, 1996. "Recent Advances in Numerical Methods for Pricing Derivative Securities," CIRANO Working Papers 96s-17, CIRANO.
    14. Phelim Boyle & Yisong Tian, 1998. "An explicit finite difference approach to the pricing of barrier options," Applied Mathematical Finance, Taylor & Francis Journals, vol. 5(1), pages 17-43.
    15. Kyungwon Kim & Jae Wook Song, 2020. "Detecting Possible Reduction of the Housing Bubble in Korea for Different Residential Types and Regions," Sustainability, MDPI, vol. 12(3), pages 1-31, February.
    16. Huimin Yao & Frederik Pretorius, 2014. "Demand Uncertainty, Development Timing and Leasehold Land Valuation: Empirical Testing of Real Options in Residential Real Estate Development," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 42(4), pages 829-868, December.
    17. Li, Hongshan & Huang, Zhongyi, 2020. "An iterative splitting method for pricing European options under the Heston model☆," Applied Mathematics and Computation, Elsevier, vol. 387(C).
    18. Hongshan Li & Zhongyi Huang, 2020. "An iterative splitting method for pricing European options under the Heston model," Papers 2003.12934, arXiv.org.
    19. Minqiang Li, 2010. "A quasi-analytical interpolation method for pricing American options under general multi-dimensional diffusion processes," Review of Derivatives Research, Springer, vol. 13(2), pages 177-217, July.
    20. Radu Tunaru, 2015. "Model Risk in Financial Markets:From Financial Engineering to Risk Management," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 9524, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:55:y:2020:i:3:d:10.1007_s10614-019-09924-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.