IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v436y2015icp865-877.html
   My bibliography  Save this article

Interconnectedness and interdependencies of critical infrastructures in the US economy: Implications for resilience

Author

Listed:
  • Chopra, Shauhrat S.
  • Khanna, Vikas

Abstract

Natural disasters in 2011 yielded close to $55 billion in economic damages alone in the United States (US), which highlights the need to reduce impacts of such disasters or other deliberate attacks. The US Department of Homeland Security (DHS) identifies a list of 16 Critical Infrastructure Sectors (CIS) whose incapacity due to disruptions would have a debilitating impact on the nation’s economy. The goal of this work is to understand the implications of interdependencies among CIS on the resilience of the US economic system as a whole. We develop a framework that combines the empirical economic input–output (EIO) model with graph theory based techniques for understanding interdependencies, interconnectedness and resilience in the US economic system. By representing the US economy as a network, we are able to analyze its topology by separately looking at its unweighted and weighted forms. Topological analysis of the US EIO network suggests that it exhibits small world properties for the unweighted case, and in the weighted case, the throughput of industry sectors follows a power-law with an exponential cutoff. Implications of these topological properties are discussed in the paper. We also simulate hypothetical disruptions on CIS in order to identify industrial sectors that experience the largest economic impacts, and to quantify systemic vulnerability in economic terms. In addition, insights from community detection and hypothetical disruption scenarios help assess vulnerability of individual industrial communities to disruptions on individual CIS. These methodologies also provide insights regarding the extent of coupling between each CIS in the US EIO network. Based on our analysis, we observe that excessive interconnectedness and interdependencies of CIS results in high systemic vulnerability. This information can guide policymakers to design policies that improve resilience of economic networks, and evaluate policies that might indirectly increase coupling between CIS.

Suggested Citation

  • Chopra, Shauhrat S. & Khanna, Vikas, 2015. "Interconnectedness and interdependencies of critical infrastructures in the US economy: Implications for resilience," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 865-877.
  • Handle: RePEc:eee:phsmap:v:436:y:2015:i:c:p:865-877
    DOI: 10.1016/j.physa.2015.05.091
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437115005063
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2015.05.091?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Setola, Roberto & De Porcellinis, Stefano & Sforna, Marino, 2009. "Critical infrastructure dependency assessment using the input–output inoperability model," International Journal of Critical Infrastructure Protection, Elsevier, vol. 2(4), pages 170-178.
    2. Christos T. Papadas & Dale C. Dahl, 1999. "Supply‐Driven Input‐Output Multipliers," Journal of Agricultural Economics, Wiley Blackwell, vol. 50(2), pages 269-285, May.
    3. Theresa Brown & Walt Beyeler & Dianne Barton, 2004. "Assessing infrastructure interdependencies: the challenge of risk analysis for complex adaptive systems," International Journal of Critical Infrastructures, Inderscience Enterprises Ltd, vol. 1(1), pages 108-117.
    4. Liu, Haibin & Davidson, Rachel A. & Apanasovich, Tatiyana V., 2008. "Spatial generalized linear mixed models of electric power outages due to hurricanes and ice storms," Reliability Engineering and System Safety, Elsevier, vol. 93(6), pages 897-912.
    5. Christopher W. Anderson & Joost R. Santos & Yacov Y. Haimes, 2007. "A Risk-based Input-Output Methodology for Measuring the Effects of the August 2003 Northeast Blackout," Economic Systems Research, Taylor & Francis Journals, vol. 19(2), pages 183-204.
    6. Myunghwan Kim & Seung-Hoon Yoo, 2012. "The Economic Cost of Unsupplied Diesel Product in Korea Using Input-Output Analysis," Energies, MDPI, vol. 5(9), pages 1-14, September.
    7. Davis, H. Craig & Cherniack, Howard, 1987. "Interindustry approaches to the analysis of a supply disruption of a critical resource," Resources Policy, Elsevier, vol. 13(1), pages 47-54, March.
    8. Stephanie E. Chang & Timothy L. McDaniels & Joey Mikawoz & Krista Peterson, 2007. "Infrastructure failure interdependencies in extreme events: power outage consequences in the 1998 Ice Storm," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 41(2), pages 337-358, May.
    9. Adam Rose & Shu‐Yi Liao, 2005. "Modeling Regional Economic Resilience to Disasters: A Computable General Equilibrium Analysis of Water Service Disruptions," Journal of Regional Science, Wiley Blackwell, vol. 45(1), pages 75-112, February.
    10. Elias Giannakis, 2010. "An input-output approach in assessing the impact of extensive versus intensive farming systems on rural development: the case of Greece," Working Papers 2010-01, Agricultural University of Athens, Department Of Agricultural Economics.
    11. Joost R. Santos & Krista Danielle S. Yu & Sheree Ann T. Pagsuyoin & Raymond R. Tan, 2014. "Time-Varying Disaster Recovery Model For Interdependent Economic Systems Using Hybrid Input--Output And Event Tree Analysis," Economic Systems Research, Taylor & Francis Journals, vol. 26(1), pages 60-80, March.
    12. Miller,Ronald E. & Blair,Peter D., 2009. "Input-Output Analysis," Cambridge Books, Cambridge University Press, number 9780521517133.
    13. Réka Albert & Hawoong Jeong & Albert-László Barabási, 2000. "Error and attack tolerance of complex networks," Nature, Nature, vol. 406(6794), pages 378-382, July.
    14. Miller,Ronald E. & Blair,Peter D., 2009. "Input-Output Analysis," Cambridge Books, Cambridge University Press, number 9780521739023.
    15. Olaf Jonkeren & Georgios Giannopoulos, 2014. "Analysing Critical Infrastructure Failure With A Resilience Inoperability Input--Output Model," Economic Systems Research, Taylor & Francis Journals, vol. 26(1), pages 39-59, March.
    16. Petkovich, Michael D. & Ching, Chauncey T.K., 1978. "Modifying A One Region Leontief Input-Output Model To Show Sector Capacity Constraints," Western Journal of Agricultural Economics, Western Agricultural Economics Association, vol. 3(2), pages 1-8, December.
    17. Alessandro Vespignani, 2010. "The fragility of interdependency," Nature, Nature, vol. 464(7291), pages 984-985, April.
    18. Johnson, Thomas G. & Kulshreshtha, Surendra N., 1982. "Exogenizing Agriculture In An Input-Output Model To Estimate Relative Impacts Of Different Farm Types," Western Journal of Agricultural Economics, Western Agricultural Economics Association, vol. 7(2), pages 1-12, December.
    19. Vasco Carvalho, 2007. "Aggregate fluctuations and the network structure of intersectoral trade," Economics Working Papers 1206, Department of Economics and Business, Universitat Pompeu Fabra, revised Oct 2010.
    20. Yasuhide Okuyama & Joost R. Santos, 2014. "Disaster Impact And Input--Output Analysis," Economic Systems Research, Taylor & Francis Journals, vol. 26(1), pages 1-12, March.
    21. Zhang, Pengcheng & Peeta, Srinivas, 2011. "A generalized modeling framework to analyze interdependencies among infrastructure systems," Transportation Research Part B: Methodological, Elsevier, vol. 45(3), pages 553-579, March.
    22. Martha G. Alatriste Contreras & Giorgio Fagiolo, 2014. "Propagation of economic shocks in input-output networks: A cross-country analysis," Post-Print hal-01474258, HAL.
    23. Dirk Helbing, 2013. "Globally networked risks and how to respond," Nature, Nature, vol. 497(7447), pages 51-59, May.
    24. Sergey V. Buldyrev & Roni Parshani & Gerald Paul & H. Eugene Stanley & Shlomo Havlin, 2010. "Catastrophic cascade of failures in interdependent networks," Nature, Nature, vol. 464(7291), pages 1025-1028, April.
    25. Kerschner, Christian & Hubacek, Klaus, 2009. "Assessing the suitability of input–output analysis for enhancing our understanding of potential economic effects of Peak Oil," Energy, Elsevier, vol. 34(3), pages 284-290.
    26. McNerney, James & Fath, Brian D. & Silverberg, Gerald, 2013. "Network structure of inter-industry flows," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(24), pages 6427-6441.
    27. John E. Bigger & Michael G. Willingham & Frederick Krimgold & Lamine Mili, 2009. "Consequences of critical infrastructure interdependencies: lessons from the 2004 hurricane season in Florida," International Journal of Critical Infrastructures, Inderscience Enterprises Ltd, vol. 5(3), pages 199-219.
    28. Ouyang, Min, 2014. "Review on modeling and simulation of interdependent critical infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 43-60.
    29. Basu, N & Pryor, R & Quint, T, 1998. "ASPEN: A Microsimulation Model of the Economy," Computational Economics, Springer;Society for Computational Economics, vol. 12(3), pages 223-241, December.
    30. Rose, Adam, 1995. "Input-output economics and computable general equilibrium models," Structural Change and Economic Dynamics, Elsevier, vol. 6(3), pages 295-304, August.
    31. Krista Danielle S. Yu & Raymond R. Tan & Kathleen B. Aviso & Michael Angelo B. Promentilla & Joost R. Santos, 2014. "A Vulnerability Index For Post-Disaster Key Sector Prioritization," Economic Systems Research, Taylor & Francis Journals, vol. 26(1), pages 81-97, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ouyang, Min, 2014. "Review on modeling and simulation of interdependent critical infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 43-60.
    2. Samiul Hasan & Greg Foliente, 2015. "Modeling infrastructure system interdependencies and socioeconomic impacts of failure in extreme events: emerging R&D challenges," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(3), pages 2143-2168, September.
    3. Liu, Huan & Tatano, Hirokazu & Pflug, Georg & Hochrainer-Stigler, Stefan, 2021. "Post-disaster recovery in industrial sectors: A Markov process analysis of multiple lifeline disruptions," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    4. Lu, Qing-Chang & Xu, Peng-Cheng & Zhao, Xiangmo & Zhang, Lei & Li, Xiaoling & Cui, Xin, 2022. "Measuring network interdependency between dependent networks: A supply-demand-based approach," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    5. Sellevåg, Stig Rune, 2021. "Changes in inoperability for interdependent industry sectors in Norway from 2012 to 2017," International Journal of Critical Infrastructure Protection, Elsevier, vol. 32(C).
    6. Linn Svegrup & Jonas Johansson & Henrik Hassel, 2019. "Integration of Critical Infrastructure and Societal Consequence Models: Impact on Swedish Power System Mitigation Decisions," Risk Analysis, John Wiley & Sons, vol. 39(9), pages 1970-1996, September.
    7. Juan C. Surís-Regueiro & José L. Santiago, 2016. "An Input-Output methodological proposal to quantifying socio economic impacts linked to supply shocks," Working Papers 1603, Universidade de Vigo, Departamento de Economía Aplicada.
    8. Wang, Weiping & Yang, Saini & Hu, Fuyu & Stanley, H. Eugene & He, Shuai & Shi, Mimi, 2018. "An approach for cascading effects within critical infrastructure systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 164-177.
    9. Stergiopoulos, George & Kotzanikolaou, Panayiotis & Theocharidou, Marianthi & Lykou, Georgia & Gritzalis, Dimitris, 2016. "Time-based critical infrastructure dependency analysis for large-scale and cross-sectoral failures," International Journal of Critical Infrastructure Protection, Elsevier, vol. 12(C), pages 46-60.
    10. Didier Wernli & Lucas Böttcher & Flore Vanackere & Yuliya Kaspiarovich & Maria Masood & Nicolas Levrat, 2023. "Understanding and governing global systemic crises in the 21st century: A complexity perspective," Global Policy, London School of Economics and Political Science, vol. 14(2), pages 207-228, May.
    11. Masato Yamazaki & Atsushi Koike & Yoshinori Sone, 2018. "A Heuristic Approach to the Estimation of Key Parameters for a Monthly, Recursive, Dynamic CGE Model," Economics of Disasters and Climate Change, Springer, vol. 2(3), pages 283-301, October.
    12. Balint, T. & Lamperti, F. & Mandel, A. & Napoletano, M. & Roventini, A. & Sapio, A., 2017. "Complexity and the Economics of Climate Change: A Survey and a Look Forward," Ecological Economics, Elsevier, vol. 138(C), pages 252-265.
    13. David Nortes Martínez & Frédéric Grelot & Pauline Bremond & Stefano Farolfi & Juliette Rouchier, 2021. "Are interactions important in estimating flood damage to economic entities? The case of wine-making in France," Post-Print hal-03609616, HAL.
    14. Monsalve, Mauricio & de la Llera, Juan Carlos, 2019. "Data-driven estimation of interdependencies and restoration of infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 167-180.
    15. Rui Huang & Arunima Malik & Manfred Lenzen & Yutong Jin & Yafei Wang & Futu Faturay & Zhiyi Zhu, 2022. "Supply-chain impacts of Sichuan earthquake: a case study using disaster input–output analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 2227-2248, February.
    16. Zio, Enrico, 2016. "Challenges in the vulnerability and risk analysis of critical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 137-150.
    17. Arnaud Mignan & Ziqi Wang, 2020. "Exploring the Space of Possibilities in Cascading Disasters with Catastrophe Dynamics," IJERPH, MDPI, vol. 17(19), pages 1-21, October.
    18. Aldasoro, Iñaki & Alves, Iván, 2018. "Multiplex interbank networks and systemic importance: An application to European data," Journal of Financial Stability, Elsevier, vol. 35(C), pages 17-37.
    19. Wang, Jianwei & Jiang, Chen & Qian, Jianfei, 2014. "Robustness of interdependent networks with different link patterns against cascading failures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 535-541.
    20. Kashin Sugishita & Yasuo Asakura, 2021. "Vulnerability studies in the fields of transportation and complex networks: a citation network analysis," Public Transport, Springer, vol. 13(1), pages 1-34, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:436:y:2015:i:c:p:865-877. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.