Advanced Search
MyIDEAS: Login to save this article or follow this journal

Repeated games with probabilistic horizon

Contents:

Author Info

  • Arribas, I.
  • Urbano, A.

Abstract

Repeated games with probabilistic horizon are defined as those games where players have a common probability structure over the length of the game's repetition, T. In particular, for each t, they assign a probability pt to the event that "the game ends in period t". In this framework we analyze Generalized Prisoners' Dilemma games in both finite stage and differentiable stage games. Our construction shows that it is possible to reach cooperative equilibria under some conditions on the distribution of the discrete random variable T even if the expected length of the game is finite. More precisely, we completely characterize the existence of sub-game perfect cooperative equilibria in finite stage games by the (first order) convergence speed: the behavior in the limit of the ratio between the ending probabilities of two consecutive periods. Cooperation in differentiable stage games is determined by the second order convergence speed, which gives a finer analysis of the probability convergence process when the first convergence speed is zero.Leptokurtic distributions are defined as those distributions for which the (first order) convergence speed is zero and they preclude cooperation in finite stage games with probabilistic horizon. However, this negative result is obtained in differential stage games only for a subset of these distributions.

(This abstract was borrowed from another version of this item.)

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.sciencedirect.com/science/article/B6V88-4FVJC08-1/2/a7c647c2d71a7f197543cbadd3197ac9
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Elsevier in its journal Mathematical Social Sciences.

Volume (Year): 50 (2005)
Issue (Month): 1 (July)
Pages: 39-60

as in new window
Handle: RePEc:eee:matsoc:v:50:y:2005:i:1:p:39-60

Contact details of provider:
Web page: http://www.elsevier.com/locate/inca/505565

Related research

Keywords:

Other versions of this item:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Jones, Michael A., 1998. "Cones of cooperation, Perron-Frobenius Theory and the indefinitely repeated Prisoners' Dilemma," Journal of Mathematical Economics, Elsevier, vol. 30(2), pages 187-206, September.
  2. Bernheim B. Douglas & Dasgupta Aniruddha, 1995. "Repeated Games with Asymptotically Finite Horizons," Journal of Economic Theory, Elsevier, vol. 67(1), pages 129-152, October.
  3. Abreu, Dilip, 1988. "On the Theory of Infinitely Repeated Games with Discounting," Econometrica, Econometric Society, vol. 56(2), pages 383-96, March.
  4. Michael A. Jones, 1999. "The effect of punishment duration of trigger strategies and quasifinite continuation probabilities for Prisoners' Dilemmas," International Journal of Game Theory, Springer, vol. 28(4), pages 533-546.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Haeussler, Carolin & Jiang, Lin & Thursby, Jerry & Thursby, Marie, 2014. "Specific and general information sharing among competing academic researchers," Research Policy, Elsevier, vol. 43(3), pages 465-475.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:eee:matsoc:v:50:y:2005:i:1:p:39-60. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.