IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v91y2013icp193-210.html
   My bibliography  Save this article

Adaptive sliding mode control of interleaved parallel boost converter for fuel cell energy generation system

Author

Listed:
  • El Fadil, H.
  • Giri, F.
  • Guerrero, Josep M.

Abstract

This paper deals with the problem of controlling energy generation systems including fuel cells (FCs) and interleaved boost power converters. The proposed nonlinear adaptive controller is designed using sliding mode control (SMC) technique based on the system nonlinear model. The latter accounts for the boost converter large-signal dynamics as well as for the fuel-cell nonlinear characteristics. The adaptive nonlinear controller involves online estimation of the DC bus impedance ‘seen’ by the converter. The control objective is threefold: (i) asymptotic stability of the closed loop system, (ii) output voltage regulation under bus impedance uncertainties and (iii) equal current sharing between modules. It is formally shown, using theoretical analysis and simulations, that the developed adaptive controller actually meets its control objectives.

Suggested Citation

  • El Fadil, H. & Giri, F. & Guerrero, Josep M., 2013. "Adaptive sliding mode control of interleaved parallel boost converter for fuel cell energy generation system," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 91(C), pages 193-210.
  • Handle: RePEc:eee:matcom:v:91:y:2013:i:c:p:193-210
    DOI: 10.1016/j.matcom.2012.07.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475412001747
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2012.07.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Akorede, Mudathir Funsho & Hizam, Hashim & Pouresmaeil, Edris, 2010. "Distributed energy resources and benefits to the environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 724-734, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hollweg, Guilherme Vieira & Evald, Paulo Jefferson Dias de Oliveira & Milbradt, Deise Maria Cirolini & Tambara, Rodrigo Varella & Gründling, Hilton Abílio, 2022. "Design of continuous-time model reference adaptive and super-twisting sliding mode controller," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 215-238.
    2. Zhang, Yunong & Zhai, Keke & Chen, Dechao & Jin, Long & Hu, Chaowei, 2016. "Challenging simulation practice (failure and success) on implicit tracking control of double-integrator system via Zhang-gradient method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 120(C), pages 104-119.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi, Ji Hyun & Ko, Woong & Park, Jong-Keun & Park, Hyeongon, 2018. "Impact of carbon emission constraint on design of small scale multi-energy system," Energy, Elsevier, vol. 161(C), pages 792-808.
    2. Domenech, B. & Ferrer-Martí, L. & Pastor, R., 2015. "Including management and security of supply constraints for designing stand-alone electrification systems in developing countries," Renewable Energy, Elsevier, vol. 80(C), pages 359-369.
    3. Ismail, M.S. & Moghavvemi, M. & Mahlia, T.M.I., 2013. "Energy trends in Palestinian territories of West Bank and Gaza Strip: Possibilities for reducing the reliance on external energy sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 117-129.
    4. Chandel, S.S. & Shrivastva, Rajnish & Sharma, Vikrant & Ramasamy, P., 2016. "Overview of the initiatives in renewable energy sector under the national action plan on climate change in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 866-873.
    5. Urooj Javed & Saif Ullah & Muhammad Imran & Asif Iqbal Malik & Nokhaiz Tariq Khan, 2021. "Power Distribution Network Expansion and Location Optimization of Additional Facilities: A Case Study," Sustainability, MDPI, vol. 13(14), pages 1-26, July.
    6. Antoine Boche & Clément Foucher & Luiz Fernando Lavado Villa, 2022. "Understanding Microgrid Sustainability: A Systemic and Comprehensive Review," Energies, MDPI, vol. 15(8), pages 1-29, April.
    7. Moroni, Stefano & Antoniucci, Valentina & Bisello, Adriano, 2016. "Energy sprawl, land taking and distributed generation: towards a multi-layered density," Energy Policy, Elsevier, vol. 98(C), pages 266-273.
    8. SungJoong Kim & YeonOuk Chu & HyunJoong Kim & HyungTae Kim & HeeSeung Moon & JinHo Sung & YongTae Yoon & YoungGyu Jin, 2022. "Analyzing Various Aspects of Network Losses in Peer-to-Peer Electricity Trading," Energies, MDPI, vol. 15(3), pages 1-23, January.
    9. Maroufmashat, Azadeh & Elkamel, Ali & Fowler, Michael & Sattari, Sourena & Roshandel, Ramin & Hajimiragha, Amir & Walker, Sean & Entchev, Evgueniy, 2015. "Modeling and optimization of a network of energy hubs to improve economic and emission considerations," Energy, Elsevier, vol. 93(P2), pages 2546-2558.
    10. Hirsch, Adam & Parag, Yael & Guerrero, Josep, 2018. "Microgrids: A review of technologies, key drivers, and outstanding issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 402-411.
    11. Paliwal, Priyanka & Patidar, N.P. & Nema, R.K., 2014. "Planning of grid integrated distributed generators: A review of technology, objectives and techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 557-570.
    12. SungJoong Kim & YongTae Yoon & YoungGyu Jin, 2022. "Price-Guided Peer-To-Peer Trading Scheme and Its Effects on Transaction Costs and Network Losses," Energies, MDPI, vol. 15(21), pages 1-19, November.
    13. Yazdanie, Mashael & Densing, Martin & Wokaun, Alexander, 2016. "The role of decentralized generation and storage technologies in future energy systems planning for a rural agglomeration in Switzerland," Energy Policy, Elsevier, vol. 96(C), pages 432-445.
    14. Maarten Wolsink, 2020. "Framing in Renewable Energy Policies: A Glossary," Energies, MDPI, vol. 13(11), pages 1-31, June.
    15. Adil, Ali M. & Ko, Yekang, 2016. "Socio-technical evolution of Decentralized Energy Systems: A critical review and implications for urban planning and policy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1025-1037.
    16. Di Somma, M. & Graditi, G. & Heydarian-Forushani, E. & Shafie-khah, M. & Siano, P., 2018. "Stochastic optimal scheduling of distributed energy resources with renewables considering economic and environmental aspects," Renewable Energy, Elsevier, vol. 116(PA), pages 272-287.
    17. Zhang, Na & Wang, Zefeng & Lior, Noam & Han, Wei, 2018. "Advancement of distributed energy methods by a novel high efficiency solar-assisted combined cooling, heating and power system," Applied Energy, Elsevier, vol. 219(C), pages 179-186.
    18. Tan, Wen-Shan & Hassan, Mohammad Yusri & Majid, Md Shah & Abdul Rahman, Hasimah, 2013. "Optimal distributed renewable generation planning: A review of different approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 626-645.
    19. Oliva H, Sebastian, 2018. "Assessing the growth of residential PV exports with energy efficiency and the opportunity for local generation network credits," Renewable Energy, Elsevier, vol. 121(C), pages 451-459.
    20. Irfan, Muhammad & Iqbal, Jamshed & Iqbal, Adeel & Iqbal, Zahid & Riaz, Raja Ali & Mehmood, Adeel, 2017. "Opportunities and challenges in control of smart grids – Pakistani perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 652-674.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:91:y:2013:i:c:p:193-210. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.