IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i14p7760-d592659.html
   My bibliography  Save this article

Power Distribution Network Expansion and Location Optimization of Additional Facilities: A Case Study

Author

Listed:
  • Urooj Javed

    (Department of Industrial Engineering, University of Engineering and Technology, Taxila 47080, Pakistan)

  • Saif Ullah

    (Department of Industrial Engineering, University of Engineering and Technology, Taxila 47080, Pakistan)

  • Muhammad Imran

    (Department of Operations and Supply Chain, NUST Business School, National University of Science & Technology, Islamabad, Pakistan)

  • Asif Iqbal Malik

    (Department of Hotel and Tourism Management, College of Hospitality and Tourism, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Korea)

  • Nokhaiz Tariq Khan

    (Department of Business and Management, Information Technology University, Lahore, Pakistan)

Abstract

Planning the power distribution network is critical and challenging; the main challenges include the multiple costs involved, selecting the appropriate locations of different nodes of the network at minimal cost, and minimizing the cost of energy loss for both the primary and secondary networks. Literature on the power distribution network presents different approaches, however, lacks to address the several issues of the complex power distribution networks and many aspects are yet to be explored; for example, the uncertain cost of energy loss. This study intends to address the gaps in the literature by proposing a four-phased approach. In doing so, first, an integer linear programming model is formulated with the objective of cost minimization. Secondly, fuzzy variables are used to tackle the parameters with uncertainty; cost of energy loss. In the third phase, a fine-tuned genetic algorithm (FT-GA) that uses the Taguchi Orthogonal Array is introduced to solve the mathematical model. It is worth mentioning that during the design of the experiment, the input parameters are crossover rate, elite count, and population size. In the last phase, a pragmatic approach is adopted and a Pakistan-based case study is used to validate the proposed model and its implication in real-life scenarios. The results exhibit that our proposed approach outperforms traditional methods like the genetic algorithm (GA) and inter-point methods in terms of fitness function value, number of generations, and computational time. This research contributes at both theoretical and managerial levels and may help decision-makers to design networks more efficiently and cost-effectively in Pakistan, Asia, and beyond.

Suggested Citation

  • Urooj Javed & Saif Ullah & Muhammad Imran & Asif Iqbal Malik & Nokhaiz Tariq Khan, 2021. "Power Distribution Network Expansion and Location Optimization of Additional Facilities: A Case Study," Sustainability, MDPI, vol. 13(14), pages 1-26, July.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:14:p:7760-:d:592659
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/14/7760/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/14/7760/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Akorede, Mudathir Funsho & Hizam, Hashim & Pouresmaeil, Edris, 2010. "Distributed energy resources and benefits to the environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 724-734, February.
    2. Riba, Jordi-Roger & Santiago Bogarra, & Gómez-Pau, Álvaro & Moreno-Eguilaz, Manuel, 2020. "Uprating of transmission lines by means of HTLS conductors for a sustainable growth: Challenges, opportunities, and research needs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi, Ji Hyun & Ko, Woong & Park, Jong-Keun & Park, Hyeongon, 2018. "Impact of carbon emission constraint on design of small scale multi-energy system," Energy, Elsevier, vol. 161(C), pages 792-808.
    2. Ismail, M.S. & Moghavvemi, M. & Mahlia, T.M.I., 2013. "Energy trends in Palestinian territories of West Bank and Gaza Strip: Possibilities for reducing the reliance on external energy sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 117-129.
    3. Moroni, Stefano & Antoniucci, Valentina & Bisello, Adriano, 2016. "Energy sprawl, land taking and distributed generation: towards a multi-layered density," Energy Policy, Elsevier, vol. 98(C), pages 266-273.
    4. Yazdanie, Mashael & Densing, Martin & Wokaun, Alexander, 2016. "The role of decentralized generation and storage technologies in future energy systems planning for a rural agglomeration in Switzerland," Energy Policy, Elsevier, vol. 96(C), pages 432-445.
    5. Di Somma, M. & Graditi, G. & Heydarian-Forushani, E. & Shafie-khah, M. & Siano, P., 2018. "Stochastic optimal scheduling of distributed energy resources with renewables considering economic and environmental aspects," Renewable Energy, Elsevier, vol. 116(PA), pages 272-287.
    6. Zhang, Na & Wang, Zefeng & Lior, Noam & Han, Wei, 2018. "Advancement of distributed energy methods by a novel high efficiency solar-assisted combined cooling, heating and power system," Applied Energy, Elsevier, vol. 219(C), pages 179-186.
    7. Oliva H, Sebastian, 2018. "Assessing the growth of residential PV exports with energy efficiency and the opportunity for local generation network credits," Renewable Energy, Elsevier, vol. 121(C), pages 451-459.
    8. Roberta De Robbio, 2023. "Micro Gas Turbine Role in Distributed Generation with Renewable Energy Sources," Energies, MDPI, vol. 16(2), pages 1-37, January.
    9. Botelho, D.F. & de Oliveira, L.W. & Dias, B.H. & Soares, T.A. & Moraes, C.A., 2022. "Prosumer integration into the Brazilian energy sector: An overview of innovative business models and regulatory challenges," Energy Policy, Elsevier, vol. 161(C).
    10. Laura Del-Río-Carazo & Emiliano Acquila-Natale & Santiago Iglesias-Pradas & Ángel Hernández-García, 2022. "Sustainable Rural Electrification Project Management: An Analysis of Three Case Studies," Energies, MDPI, vol. 15(3), pages 1-21, February.
    11. Marina Bertolini & Gregorio Morosinotto, 2023. "Business Models for Energy Community in the Aggregator Perspective: State of the Art and Research Gaps," Energies, MDPI, vol. 16(11), pages 1-26, June.
    12. Sward, Jeffrey A. & Siff, Jackson & Gu, Jiajun & Zhang, K. Max, 2019. "Strategic planning for utility-scale solar photovoltaic development – Historical peak events revisited," Applied Energy, Elsevier, vol. 250(C), pages 1292-1301.
    13. Wee, Hui-Ming & Yang, Wen-Hsiung & Chou, Chao-Wu & Padilan, Marivic V., 2012. "Renewable energy supply chains, performance, application barriers, and strategies for further development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5451-5465.
    14. Ying Zhu & Quanling Tong & Xueting Zeng & Xiaxia Yan & Yongping Li & Guohe Huang, 2019. "Optimal Design of a Distributed Energy System Using the Functional Interval Model That Allows Reduced Carbon Emissions in Guanzhong, a Rural Area of China," Sustainability, MDPI, vol. 11(7), pages 1-22, April.
    15. Mahlia, T.M.I. & Tohno, S. & Tezuka, T., 2012. "A review on fuel economy test procedure for automobiles: Implementation possibilities in Malaysia and lessons for other countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4029-4046.
    16. Cardoso, G. & Stadler, M. & Bozchalui, M.C. & Sharma, R. & Marnay, C. & Barbosa-Póvoa, A. & Ferrão, P., 2014. "Optimal investment and scheduling of distributed energy resources with uncertainty in electric vehicle driving schedules," Energy, Elsevier, vol. 64(C), pages 17-30.
    17. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "A review of uncertainty characterisation approaches for the optimal design of distributed energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 258-277.
    18. Dadouche, F. & Béthoux, O. & Kleider, J.-P., 2011. "New silicon thin-film technology associated with original DC–DC converter: An economic alternative way to improve photovoltaic systems efficiencies," Energy, Elsevier, vol. 36(3), pages 1749-1757.
    19. Kalkbrenner, Bernhard J. & Yonezawa, Koichi & Roosen, Jutta, 2017. "Consumer preferences for electricity tariffs: Does proximity matter?," Energy Policy, Elsevier, vol. 107(C), pages 413-424.
    20. Fatih Cemil Ozbugday & Onder Ozgur, 2018. "Advanced Metering Infrastructure and Distributed Generation: Panel Causality Evidence from New Zealand," International Journal of Energy Economics and Policy, Econjournals, vol. 8(5), pages 125-137.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:14:p:7760-:d:592659. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.