IDEAS home Printed from https://ideas.repec.org/a/eee/lauspo/v88y2019ics0264837717312255.html
   My bibliography  Save this article

Visualizing feedstock siting in biomass production: Tradeoffs between economic and water quality objectives

Author

Listed:
  • Gorelick, David E.
  • Baskaran, Latha M.
  • Jager, Henriëtte I.

Abstract

New domestic, renewable energy resources must be considered to increase energy security in the U.S. Ethanol production through second-generation (cellulosic) feedstocks will help the U.S. meet the legislative Renewable Fuel Standard, which mandates 36 billion gallons of renewable fuels by 2022. However, conversion of cropland to meet the cellulosic feedstock production goals may have unforeseen environmental consequences. Using Soil Water Assessment Tool (SWAT) outputs and National Agricultural Statistics Service (USDA NASS) economic data, we conducted a spatial optimization of bioenergy feedstock introduction into the Arkansas White-Red River Basin based on water quality and economic objectives, subject to constraints on total land conversion. Results displayed tradeoffs between bioenergy yield for three crops (switchgrass, sorghum and poplar) and land rent objectives. Optimal solutions tended to prioritize conversion of land in eastern AWR subbasins where yield and water quality objective improvements were greatest. A small number of subbasins contributed to basin-wide water quality improvements, whereas subbasins contributing to economic benefits were more spatially dispersed, indicating that water quality responses are more likely to constrain feedstock placement. Biomass production targets can be met vianumerous spatial arrangements, whereas marginal improvement in water quality objectives can best be achieved by selectively siting perennial feedstocks in the eastern half of the region.

Suggested Citation

  • Gorelick, David E. & Baskaran, Latha M. & Jager, Henriëtte I., 2019. "Visualizing feedstock siting in biomass production: Tradeoffs between economic and water quality objectives," Land Use Policy, Elsevier, vol. 88(C).
  • Handle: RePEc:eee:lauspo:v:88:y:2019:i:c:s0264837717312255
    DOI: 10.1016/j.landusepol.2019.104201
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0264837717312255
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.landusepol.2019.104201?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhong, Jia & Yu, T. Edward & Clark, Christopher D. & English, Burton C. & Larson, James A. & Cheng, Chu-Lin, 2018. "Effect of land use change for bioenergy production on feedstock cost and water quality," Applied Energy, Elsevier, vol. 210(C), pages 580-590.
    2. Yang, Hong & Zhou, Yuan & Liu, Junguo, 2009. "Land and water requirements of biofuel and implications for food supply and the environment in China," Energy Policy, Elsevier, vol. 37(5), pages 1876-1885, May.
    3. Brandes, Elke & McNunn, Gabriel Sean & Schulte, Lisa A. & Bonner, Ian J. & Muth, D. J. & Babcock, Bruce A. & Sharma, Bhavna & Heaton, Emily A., 2016. "Subfield profitability analysis reveals an economic case for cropland diversification," ISU General Staff Papers 201601010800001048, Iowa State University, Department of Economics.
    4. Brandes, Elke & McNunn, Gabriel Sean & Schulte, Lisa A. & Bonner, Ian J. & Muth, D. J. & Babcock, Bruce A. & Sharma, Bhavna & Heaton, Emily A., 2016. "Subfield profitability analysis reveals an economic case for cropland diversification," ISU General Staff Papers 3442, Iowa State University, Department of Economics.
    5. Gassman, Philip W. & Reyes, Manuel R. & Green, Colleen H. & Arnold, Jeffrey G., 2007. "The Soil and Water Assessment Tool: Historical Development, Applications, and Future Research Directions," ISU General Staff Papers 200701010800001027, Iowa State University, Department of Economics.
    6. Ziolkowska, Jadwiga R., 2014. "Optimizing biofuels production in an uncertain decision environment: Conventional vs. advanced technologies," Applied Energy, Elsevier, vol. 114(C), pages 366-376.
    7. Convery, I. & Robson, D. & Ottitsch, A. & Long, M., 2012. "The willingness of farmers to engage with bioenergy and woody biomass production: A regional case study from Cumbria," Energy Policy, Elsevier, vol. 40(C), pages 293-300.
    8. Cobuloglu, Halil I. & Büyüktahtakın, İ. Esra, 2015. "Food vs. biofuel: An optimization approach to the spatio-temporal analysis of land-use competition and environmental impacts," Applied Energy, Elsevier, vol. 140(C), pages 418-434.
    9. Langholtz, Matthew & Graham, Robin & Eaton, Laurence & Perlack, Robert & Hellwinkel, Chad & De La Torre Ugarte, Daniel G., 2012. "Price projections of feedstocks for biofuels and biopower in the U.S," Energy Policy, Elsevier, vol. 41(C), pages 484-493.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weng, Yuwei & Chang, Shiyan & Cai, Wenjia & Wang, Can, 2019. "Exploring the impacts of biofuel expansion on land use change and food security based on a land explicit CGE model: A case study of China," Applied Energy, Elsevier, vol. 236(C), pages 514-525.
    2. Baudry, Gino & Delrue, Florian & Legrand, Jack & Pruvost, Jérémy & Vallée, Thomas, 2017. "The challenge of measuring biofuel sustainability: A stakeholder-driven approach applied to the French case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 933-947.
    3. G. Denisse Chamochumbi D. & Massimo Ciambotti & Federica Palazzi & Francesca Sgr?, 2022. "The digital transformation process in the agri-food sector: A case study," MANAGEMENT CONTROL, FrancoAngeli Editore, vol. 2022(2 Suppl.), pages 43-70.
    4. Abbas Mardani & Sarita Devi & Melfi Alrasheedi & Leena Arya & Mrigendra Pratap Singh & Kiran Pandey, 2023. "Hybrid Intuitionistic Fuzzy Entropy-SWARA-COPRAS Method for Multi-Criteria Sustainable Biomass Crop Type Selection," Sustainability, MDPI, vol. 15(10), pages 1-18, May.
    5. Capmourteres, Virginia & Adams, Justin & Berg, Aaron & Fraser, Evan & Swanton, Clarence & Anand, Madhur, 2018. "Precision conservation meets precision agriculture: A case study from southern Ontario," Agricultural Systems, Elsevier, vol. 167(C), pages 176-185.
    6. Madhu Khanna, 2021. "Digital Transformation of the Agricultural Sector: Pathways, Drivers and Policy Implications," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 43(4), pages 1221-1242, December.
    7. Scott M. Swinton, 2022. "Precision conservation: Linking set‐aside and working lands policy," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 44(3), pages 1158-1167, September.
    8. Matthew Langholtz & Ingrid Busch & Abishek Kasturi & Michael R. Hilliard & Joanna McFarlane & Costas Tsouris & Srijib Mukherjee & Olufemi A. Omitaomu & Susan M. Kotikot & Melissa R. Allen-Dumas & Chri, 2020. "The Economic Accessibility of CO 2 Sequestration through Bioenergy with Carbon Capture and Storage (BECCS) in the US," Land, MDPI, vol. 9(9), pages 1-24, August.
    9. Chennault, Carrie M. & Valek, Robert M. & Tyndall, John C. & Schulte, Lisa A., 2020. "PEWI: An interactive web-based ecosystem service model for a broad public audience," Ecological Modelling, Elsevier, vol. 431(C).
    10. Ronald Revord & Sarah Lovell & Thomas Molnar & Kevin J. Wolz & Chloé Mattia, 2019. "Germplasm Development of Underutilized Temperate U.S. Tree Crops," Sustainability, MDPI, vol. 11(6), pages 1-20, March.
    11. Noe, Ryan R. & Nachman, Elizabeth R. & Heavenrich, Hannah R. & Keeler, Bonnie L. & Hernández, Daniel L. & Hill, Jason D., 2016. "Assessing uncertainty in the profitability of prairie biomass production with ecosystem service compensation," Ecosystem Services, Elsevier, vol. 21(PA), pages 103-108.
    12. Iriarte, Alfredo & Rieradevall, Joan & Gabarrell, Xavier, 2012. "Transition towards a more environmentally sustainable biodiesel in South America: The case of Chile," Applied Energy, Elsevier, vol. 91(1), pages 263-273.
    13. Egbendewe-Mondzozo, Aklesso & Swinton, Scott M. & Bals, Bryan D. & Dale, Bruce E., 2011. "Can Dispersed Biomass Processing Protect the Environment and Cover the Bottom Line for Biofuel?," Staff Paper Series 119348, Michigan State University, Department of Agricultural, Food, and Resource Economics.
    14. Andersson, Jafet C.M. & Zehnder, Alexander J.B. & Rockström, Johan & Yang, Hong, 2011. "Potential impacts of water harvesting and ecological sanitation on crop yield, evaporation and river flow regimes in the Thukela River basin, South Africa," Agricultural Water Management, Elsevier, vol. 98(7), pages 1113-1124, May.
    15. Hongxing Liu & Wendong Zhang & Elena Irwin & Jeffrey Kast & Noel Aloysius & Jay Martin & Margaret Kalcic, 2020. "Best Management Practices and Nutrient Reduction: An Integrated Economic-Hydrologic Model of the Western Lake Erie Basin," Land Economics, University of Wisconsin Press, vol. 96(4), pages 510-530.
    16. Haji Esmaeili, Seyed Ali & Szmerekovsky, Joseph & Sobhani, Ahmad & Dybing, Alan & Peterson, Tim O., 2020. "Sustainable biomass supply chain network design with biomass switching incentives for first-generation bioethanol producers," Energy Policy, Elsevier, vol. 138(C).
    17. Medwid, Laura J. & Lambert, Dayton M. & Clark, Christopher D. & Hawkins, Shawn A. & McClellan, Hannah A., 2016. "Estimating Soil Loss Abatement Curves with Primary Survey Data and Hydrologic Models: An Empirical Example for Livestock Production in an East Tennessee Watershed," 2016 Annual Meeting, February 6-9, 2016, San Antonio, Texas 230052, Southern Agricultural Economics Association.
    18. Sobratee-Fajurally, N. & Mabhaudhi, Tafadzwanashe, 2022. "Inclusive sustainable landscape management in West and Central Africa: enabling co-designing contexts for systemic sensibility," IWMI Books, Reports H051652, International Water Management Institute.
    19. Catherine L. Kling & Raymond W. Arritt & Gray Calhoun & David A. Keiser, 2016. "Research Needs and Challenges in the FEW System: Coupling Economic Models with Agronomic, Hydrologic, and Bioenergy Models for Sustainable Food, Energy, and Water Systems," Center for Agricultural and Rural Development (CARD) Publications 16-wp563, Center for Agricultural and Rural Development (CARD) at Iowa State University.
    20. Zemo, Kahsay Haile & Termansen, Mette, 2018. "Farmers’ willingness to participate in collective biogas investment: A discrete choice experiment study," Resource and Energy Economics, Elsevier, vol. 52(C), pages 87-101.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:lauspo:v:88:y:2019:i:c:s0264837717312255. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joice Jiang (email available below). General contact details of provider: https://www.journals.elsevier.com/land-use-policy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.