IDEAS home Printed from https://ideas.repec.org/a/eee/lauspo/v86y2019icp253-260.html
   My bibliography  Save this article

Incentivizing resource efficient technologies in India: Evidence from diffusion of micro-irrigation in the dark zone regions of Gujarat

Author

Listed:
  • Bahinipati, Chandra Sekhar
  • Viswanathan, P.K.

Abstract

The Gujarat state government had banned further extraction of groundwater and new electricity connection for agricultural purposes in 57 sub-districts, where over-exploitation of groundwater was observed, in 2001, and these regions were demarcated as dark zone in 2003. The micro-irrigation adopted farmers in these regions are entitled to get additional 10 per cent subsidy since 2012, and concurrently, the ban on new electricity connection was also withdrawn. In particular, adoption of micro-irrigation is mandatory for availing new power connection. Both of them could lead to a large-scale diffusion, and as a result, reducing pressure on groundwater extraction. Although various agricultural interventions are being incentivized in India, there is limited studies with respect to assessing its’ impact on farmers’ adoption behaviour. This paper, therefore, aims to evaluate effect of the above said incentives (subsidy and power connection) on diffusion of micro-irrigation in the dark zone regions. Information on the diffusion of micro-irrigation, i.e., drip and sprinkler irrigation, between 2006-07 and 2014 were collected for 8073 villages and towns, combining both dark zone (treated sample) and its adjacent non dark zone talukas (control group). The empirical analysis was performed for three different samples: (i) full sample, (ii) villages along the administrative boundary line drawn between the dark zone and adjacent talukas, i.e., border villages, and (iii) pair-wise border villages; expected to get robust estimation in the latter two cases as there could be no significant difference with respect to hydrological scenario and cropping patterns. Employing ordinary Least Square fixed effects model, results reveal that these policies are positively influencing diffusion of micro-irrigation. A pecuniary benefits and power connection together, for example, enhance the likelihood of incremental adoption rate by 1.6 per cent to 1.8 per cent and area installed with micro-irrigation technologies between 0.7 per cent and 1.3 per cent. This study, henceforth, supports the continuation of present incentive policies to further heightening diffusion of such technologies, and this approach could be replicated in the case other resource efficient technologies as minimizing water and energy footprints are always a policy priority.

Suggested Citation

  • Bahinipati, Chandra Sekhar & Viswanathan, P.K., 2019. "Incentivizing resource efficient technologies in India: Evidence from diffusion of micro-irrigation in the dark zone regions of Gujarat," Land Use Policy, Elsevier, vol. 86(C), pages 253-260.
  • Handle: RePEc:eee:lauspo:v:86:y:2019:i:c:p:253-260
    DOI: 10.1016/j.landusepol.2019.04.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0264837718318465
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.landusepol.2019.04.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Oriana Bandiera & Imran Rasul, 2006. "Social Networks and Technology Adoption in Northern Mozambique," Economic Journal, Royal Economic Society, vol. 116(514), pages 869-902, October.
    2. Pandey, Vijay Laxmi & Mahendra Dev, S. & Jayachandran, Usha, 2016. "Impact of agricultural interventions on the nutritional status in South Asia: A review," Food Policy, Elsevier, vol. 62(C), pages 28-40.
    3. Feder, Gershon & Just, Richard E & Zilberman, David, 1985. "Adoption of Agricultural Innovations in Developing Countries: A Survey," Economic Development and Cultural Change, University of Chicago Press, vol. 33(2), pages 255-298, January.
    4. Rebecca Taylor & David Zilberman, 2017. "Diffusion of Drip Irrigation: The Case of California," Applied Economic Perspectives and Policy, Agricultural and Applied Economics Association, vol. 39(1), pages 16-40.
    5. M. Dinesh Kumar, 2016. "Water Saving and Yield Enhancing Micro Irrigation Technologies in India: Theory and Practice," India Studies in Business and Economics, in: P. K. Viswanathan & M. Dinesh Kumar & A. Narayanamoorthy (ed.), Micro Irrigation Systems in India, edition 1, chapter 0, pages 13-36, Springer.
    6. Margriet Caswell & Erik Lichtenberg & David Zilberman, 1990. "The Effects of Pricing Policies on Water Conservation and Drainage," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 72(4), pages 883-890.
    7. Shah, Tushaar & Bhatt, Sonal & Shah, R.K. & Talati, Jayesh, 2008. "Groundwater governance through electricity supply management: Assessing an innovative intervention in Gujarat, western India," Agricultural Water Management, Elsevier, vol. 95(11), pages 1233-1242, November.
    8. Munshi, Kaivan, 2004. "Social learning in a heterogeneous population: technology diffusion in the Indian Green Revolution," Journal of Development Economics, Elsevier, vol. 73(1), pages 185-213, February.
    9. Shanxia Sun & Juan P. Sesmero & Karina Schoengold, 2016. "The role of common pool problems in irrigation inefficiency: a case study in groundwater pumping in Mexico," Agricultural Economics, International Association of Agricultural Economists, vol. 47(1), pages 117-127, January.
    10. Travis J. Lybbert & Nicholas Magnan & David J. Spielman & Anil K. Bhargava & Kajal Gulati, 2018. "Targeting Technology to Increase Smallholder Profits and Conserve Resources: Experimental Provision of Laser Land-Leveling Services to Indian Farmers," Economic Development and Cultural Change, University of Chicago Press, vol. 66(2), pages 265-306.
    11. Trevor Birkenholtz, 2017. "Assessing India’s drip-irrigation boom: efficiency, climate change and groundwater policy," Water International, Taylor & Francis Journals, vol. 42(6), pages 663-677, August.
    12. Kumar, M. Dinesh, 2005. "Impact of electricity prices and volumetric water allocation on energy and groundwater demand management:: analysis from Western India," Energy Policy, Elsevier, vol. 33(1), pages 39-51, January.
    13. Andrew D. Foster & Mark R. Rosenzweig, 2010. "Microeconomics of Technology Adoption," Annual Review of Economics, Annual Reviews, vol. 2(1), pages 395-424, September.
    14. Jeffrey M Wooldridge, 2010. "Econometric Analysis of Cross Section and Panel Data," MIT Press Books, The MIT Press, edition 2, volume 1, number 0262232588, December.
    15. David Zilberman & Jinhua Zhao & Amir Heiman, 2012. "Adoption Versus Adaptation, with Emphasis on Climate Change," Annual Review of Resource Economics, Annual Reviews, vol. 4(1), pages 27-53, August.
    16. Farhed A. Shah & David Zilberman & Ujjayant Chakravorty, 1995. "Technology Adoption in the Presence of an Exhaustible Resource: The Case of Groundwater Extraction," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 77(2), pages 291-299.
    17. M. Dinesh Kumar, 2016. "Distressed Elephants: Policy Initiatives for Sustainable Groundwater Management in India," IIM Kozhikode Society & Management Review, , vol. 5(1), pages 51-62, January.
    18. Ram Fishman & Upmanu Lall & Vijay Modi & Nikunj Parekh, 2016. "Can Electricity Pricing Save India’s Groundwater? Field Evidence from a Novel Policy Mechanism in Gujarat," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 3(4), pages 819-855.
    19. Margarita Genius & Phoebe Koundouri & Céline Nauges & Vangelis Tzouvelekas, 2014. "Information Transmission in Irrigation Technology Adoption and Diffusion: Social Learning, Extension Services, and Spatial Effects," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 96(1), pages 328-344.
    20. Chandra Sekhar Bahinipati & P. K. Viswanathan, 2016. "Determinants of Adopting and Accessing Benefits of Water Saving Technologies: A Study of Public Tube Wells with MI Systems in North Gujarat," India Studies in Business and Economics, in: P. K. Viswanathan & M. Dinesh Kumar & A. Narayanamoorthy (ed.), Micro Irrigation Systems in India, edition 1, chapter 0, pages 133-154, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jordán, Cristian & Speelman, Stijn, 2020. "On-farm adoption of irrigation technologies in two irrigated valleys in Central Chile: The effect of relative abundance of water resources," Agricultural Water Management, Elsevier, vol. 236(C).
    2. P. K. Viswanathan & K. Kavya & Chandra Sekhar Bahinipati, 2020. "Global Patterns of Climate-resilient Agriculture: A Review of Studies and Imperatives for Empirical Research in India," Review of Development and Change, , vol. 25(2), pages 169-192, December.
    3. Bethânia Ávila Rodrigues & Mariana Machado Fidelis Nascimento & Juliana Vitória Messias Bittencourt, 2021. "Mapping of the behavior of scientific publications since the decade of 1990 until the present day in the field of food and nutrition security," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(3), pages 2459-2483, March.
    4. Ashwin Ram Sridharan & Zareena Begum Irfan, 2020. "Understanding the Water Crisis in India: Application of Causal Loop Modelling to Examine the Environment-Economy Interlinkage across Sectors," Working Papers 2020-201, Madras School of Economics,Chennai,India.
    5. Chandra Sekhar Bahinipati & Vijay Kumar & P. K. Viswanathan, 2021. "An evidence-based systematic review on farmers’ adaptation strategies in India," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 13(2), pages 399-418, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khushbu Mishra & Abdoul G. Sam & Gracious M. Diiro & Mario J. Miranda, 2020. "Gender and the dynamics of technology adoption: Empirical evidence from a household‐level panel data," Agricultural Economics, International Association of Agricultural Economists, vol. 51(6), pages 857-870, November.
    2. Kazushi Takahashi & Rie Muraoka & Keijiro Otsuka, 2020. "Technology adoption, impact, and extension in developing countries’ agriculture: A review of the recent literature," Agricultural Economics, International Association of Agricultural Economists, vol. 51(1), pages 31-45, January.
    3. Tisorn Songsermsawas & Kathy Baylis & Ashwini Chhatre & Hope Michelson, 2014. "Can Peers Improve Agricultural Productivity?," CESifo Working Paper Series 4958, CESifo.
    4. Lim, Krisha & Wichmann, Bruno & Luckert, Martin, 2021. "Adaptation, spatial effects, and targeting: Evidence from Africa and Asia," World Development, Elsevier, vol. 139(C).
    5. Mekonnen, Daniel Ayalew & Gerber, Nicolas & Matz, Julia Anna, 2018. "Gendered Social Networks, Agricultural Innovations, and Farm Productivity in Ethiopia," World Development, Elsevier, vol. 105(C), pages 321-335.
    6. Enid M. Katungi & Catherine Larochelle & Josephat R. Mugabo & Robin Buruchara, 2018. "The effect of climbing bean adoption on the welfare of smallholder common bean growers in Rwanda," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 10(1), pages 61-79, February.
    7. Mekonnen Daniel Ayalew & Gerber Nicolas & Matz Julia Anna, 2016. "Working Paper 235 - Social Networks, Agricultural Innovations, and Farm Productivity in Ethiopia," Working Paper Series 2330, African Development Bank.
    8. Negash, Martha, 2015. "Drivers of bioenergy crop adoption: evidence from Ethiopia's castor bean contract farming," 2015 Conference, August 9-14, 2015, Milan, Italy 230226, International Association of Agricultural Economists.
    9. He, Pan & Lovo, Stefania & Veronesi, Marcella, 2022. "Social networks and renewable energy technology adoption: Empirical evidence from biogas adoption in China," Energy Economics, Elsevier, vol. 106(C).
    10. Arslan, Cansın & Wollni, Meike & Oduol, Judith & Hughes, Karl, 2022. "Who communicates the information matters for technology adoption," World Development, Elsevier, vol. 158(C).
    11. Garbero, A. & Marion, P., 2018. "IFAD RESEARCH SERIES 28 - Understanding the dynamics of adoption decisions and their poverty impacts: the case of improved maize seeds in Uganda," IFAD Research Series 280077, International Fund for Agricultural Development (IFAD).
    12. César Salazar & John Rand, 2016. "Production risk and adoption of irrigation technology: evidence from small-scale farmers in Chile," Latin American Economic Review, Springer;Centro de Investigaciòn y Docencia Económica (CIDE), vol. 25(1), pages 1-37, December.
    13. Wuepper, David & Sauer, Johannes & Kleemann, Linda, 2014. "Sustainable intensification of pineapple farming in Ghana: Training and complexity," Kiel Working Papers 1973, Kiel Institute for the World Economy (IfW Kiel).
    14. Varshney, Deepak & Mishra, Ashok K. & Joshi, Pramod K. & Roy, Devesh, 2022. "Social networks, heterogeneity, and adoption of technologies: Evidence from India," Food Policy, Elsevier, vol. 112(C).
    15. Saule Burkitbayeva & Emma Janssen & Johan Swinnen, 2020. "Technology Adoption, Vertical Coordination in Value Chains, and FDI in Developing Countries: Panel Evidence from the Dairy Sector in India (Punjab)," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 57(2), pages 433-479, September.
    16. Anna Folke Larsen, 2019. "When knowledgeable neighbors also share seedlings: diffusion of banana cultivation in Tanzania," Agricultural Economics, International Association of Agricultural Economists, vol. 50(1), pages 51-65, January.
    17. Jordán, Cristian & Speelman, Stijn, 2020. "On-farm adoption of irrigation technologies in two irrigated valleys in Central Chile: The effect of relative abundance of water resources," Agricultural Water Management, Elsevier, vol. 236(C).
    18. Stevens, Andrew W., 2018. "Review: The economics of soil health," Food Policy, Elsevier, vol. 80(C), pages 1-9.
    19. Janssen, Emma & Swinnen, Johan, 2019. "Technology adoption and value chains in developing countries: Evidence from dairy in India," Food Policy, Elsevier, vol. 83(C), pages 327-336.
    20. Vaiknoras, Kate A. & Larochelle, Catherine & Birol, Ekin & Asare-Marfo, Dorene & Herrington, Caitlin, 2017. "The Roles of Formal and Informal Delivery Approaches in Achieving Fast and Sustained Adoption of Biofortified Crops: Learnings from the Iron Bean Delivery Approaches in Rwanda," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258288, Agricultural and Applied Economics Association.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:lauspo:v:86:y:2019:i:c:p:253-260. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joice Jiang (email available below). General contact details of provider: https://www.journals.elsevier.com/land-use-policy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.