IDEAS home Printed from https://ideas.repec.org/a/eee/juipol/v56y2019icp159-168.html
   My bibliography  Save this article

The impact of feed-in and capacity policies on electricity generation from renewable energy sources in Spain

Author

Listed:
  • Marques, António Cardoso
  • Fuinhas, José Alberto
  • Macedo, Daniela Pereira

Abstract

This research aims to analyse the impact of feed-in tariffs, feed-in premiums, and capacity payments on electricity generation by source. It also assesses their consequences for interactions between electricity sources, while considering the market price. Monthly data for Spain, from January of 2010 to February of 2017, and the Autoregressive Distributed Lag approach were used. The results reveal that both feed-in tariffs and feed-in premiums appear to contribute negatively to electricity production from wind. Capacity payments appear to encourage fuel and natural gas producers to bid low and increase electricity production from renewable resources.

Suggested Citation

  • Marques, António Cardoso & Fuinhas, José Alberto & Macedo, Daniela Pereira, 2019. "The impact of feed-in and capacity policies on electricity generation from renewable energy sources in Spain," Utilities Policy, Elsevier, vol. 56(C), pages 159-168.
  • Handle: RePEc:eee:juipol:v:56:y:2019:i:c:p:159-168
    DOI: 10.1016/j.jup.2019.01.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0957178718300079
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jup.2019.01.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cyril Martin de Lagarde & Frédéric Lantz, 2018. "How renewable production depresses electricity prices: Evidence from the German market," Post-Print hal-01985024, HAL.
    2. Brancucci Martinez-Anido, Carlo & Brinkman, Greg & Hodge, Bri-Mathias, 2016. "The impact of wind power on electricity prices," Renewable Energy, Elsevier, vol. 94(C), pages 474-487.
    3. Bhagwat, Pradyumna C. & Iychettira, Kaveri K. & Richstein, Jörn C. & Chappin, Emile J.L. & De Vries, Laurens J., 2017. "The effectiveness of capacity markets in the presence of a high portfolio share of renewable energy sources," Utilities Policy, Elsevier, vol. 48(C), pages 76-91.
    4. Rahman, Mohammad Mafizur & Kashem, Mohammad Abul, 2017. "Carbon emissions, energy consumption and industrial growth in Bangladesh: Empirical evidence from ARDL cointegration and Granger causality analysis," Energy Policy, Elsevier, vol. 110(C), pages 600-608.
    5. Salim, Ruhul A. & Hassan, Kamrul & Shafiei, Sahar, 2014. "Renewable and non-renewable energy consumption and economic activities: Further evidence from OECD countries," Energy Economics, Elsevier, vol. 44(C), pages 350-360.
    6. M. Hashem Pesaran & Yongcheol Shin & Richard J. Smith, 2001. "Bounds testing approaches to the analysis of level relationships," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(3), pages 289-326.
    7. Benhmad, François & Percebois, Jacques, 2018. "Photovoltaic and wind power feed-in impact on electricity prices: The case of Germany," Energy Policy, Elsevier, vol. 119(C), pages 317-326.
    8. Schallenberg-Rodriguez, Julieta, 2014. "Renewable electricity support system: Design of a variable premium system based on the Spanish experience," Renewable Energy, Elsevier, vol. 68(C), pages 801-813.
    9. Marques, António Cardoso & Fuinhas, José Alberto & Menegaki, Angeliki N., 2016. "Renewable vs non-renewable electricity and the industrial production nexus: Evidence from an ARDL bounds test approach for Greece," Renewable Energy, Elsevier, vol. 96(PA), pages 645-655.
    10. Chevallier, Julien, 2011. "A model of carbon price interactions with macroeconomic and energy dynamics," Energy Economics, Elsevier, vol. 33(6), pages 1295-1312.
    11. Bajo-Buenestado, Raúl, 2017. "Welfare implications of capacity payments in a price-capped electricity sector: A case study of the Texas market (ERCOT)," Energy Economics, Elsevier, vol. 64(C), pages 272-285.
    12. Schallenberg-Rodriguez, Julieta, 2017. "Renewable electricity support systems: Are feed-in systems taking the lead?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1422-1439.
    13. Ballester, Cristina & Furió, Dolores, 2015. "Effects of renewables on the stylized facts of electricity prices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1596-1609.
    14. Martin de Lagarde, Cyril & Lantz, Frédéric, 2018. "How renewable production depresses electricity prices: Evidence from the German market," Energy Policy, Elsevier, vol. 117(C), pages 263-277.
    15. Kyritsis, Evangelos & Andersson, Jonas & Serletis, Apostolos, 2017. "Electricity prices, large-scale renewable integration, and policy implications," Energy Policy, Elsevier, vol. 101(C), pages 550-560.
    16. Bublitz, Andreas & Keles, Dogan & Fichtner, Wolf, 2017. "An analysis of the decline of electricity spot prices in Europe: Who is to blame?," Energy Policy, Elsevier, vol. 107(C), pages 323-336.
    17. Nicolini, Marcella & Tavoni, Massimo, 2017. "Are renewable energy subsidies effective? Evidence from Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 412-423.
    18. Ibanez-Lopez, A.S. & Martinez-Val, J.M. & Moratilla-Soria, B.Y., 2017. "A dynamic simulation model for assessing the overall impact of incentive policies on power system reliability, costs and environment," Energy Policy, Elsevier, vol. 102(C), pages 170-188.
    19. Ohler, Adrienne & Fetters, Ian, 2014. "The causal relationship between renewable electricity generation and GDP growth: A study of energy sources," Energy Economics, Elsevier, vol. 43(C), pages 125-139.
    20. repec:dau:papers:123456789/6969 is not listed on IDEAS
    21. Diaz, Elena Maria & Molero, Juan Carlos & Perez de Gracia, Fernando, 2016. "Oil price volatility and stock returns in the G7 economies," Energy Economics, Elsevier, vol. 54(C), pages 417-430.
    22. Marques, António Cardoso & Fuinhas, José Alberto & Menegaki, Angeliki N., 2014. "Interactions between electricity generation sources and economic activity in Greece: A VECM approach," Applied Energy, Elsevier, vol. 132(C), pages 34-46.
    23. François Benhmad & Jacques Percebois, 2018. "Photovoltaic and wind power feed-in impact on electricity prices: The case of Germany," Post-Print hal-01830537, HAL.
    24. Cyril Martin de Lagarde & Frédéric Lantz, 2018. "How renewable production depresses electricity prices: Evidence from the German market," Post-Print hal-01986207, HAL.
    25. Bölük, Gülden & Mert, Mehmet, 2015. "The renewable energy, growth and environmental Kuznets curve in Turkey: An ARDL approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 587-595.
    26. Batlle, C. & Pérez-Arriaga, I.J. & Zambrano-Barragán, P., 2012. "Regulatory design for RES-E support mechanisms: Learning curves, market structure, and burden-sharing," Energy Policy, Elsevier, vol. 41(C), pages 212-220.
    27. Bhagwat, Pradyumna C. & Iychettira, Kaveri K. & Richstein, Jörn C. & Chappin, Emile J.L. & Vries, Laurens J. De, 2017. "The effectiveness of capacity markets in the presence of a high portfolio share of renewable energy sources," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 48, pages 76-91.
    28. Ali, Wajahat & Abdullah, Azrai & Azam, Muhammad, 2017. "Re-visiting the environmental Kuznets curve hypothesis for Malaysia: Fresh evidence from ARDL bounds testing approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 990-1000.
    29. Mirza, Faisal Mehmood & Kanwal, Afra, 2017. "Energy consumption, carbon emissions and economic growth in Pakistan: Dynamic causality analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1233-1240.
    30. Brini, Riadh & Amara, Mohamed & Jemmali, Hatem, 2017. "Renewable energy consumption, International trade, oil price and economic growth inter-linkages: The case of Tunisia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 620-627.
    31. Hach, Daniel & Spinler, Stefan, 2016. "Capacity payment impact on gas-fired generation investments under rising renewable feed-in — A real options analysis," Energy Economics, Elsevier, vol. 53(C), pages 270-280.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gyanendra Singh Sisodia & Einas Awad & Heba Alkhoja & Bruno S. Sergi, 2020. "Strategic business risk evaluation for sustainable energy investment and stakeholder engagement: A proposal for energy policy development in the Middle East through Khalifa funding and land subsidies," Business Strategy and the Environment, Wiley Blackwell, vol. 29(6), pages 2789-2802, September.
    2. David Borge-Diez & Enrique Rosales-Asensio & Ana I. Palmero-Marrero & Emin Acikkalp, 2022. "Optimization of CSP Plants with Thermal Energy Storage for Electricity Price Stability in Spot Markets," Energies, MDPI, vol. 15(5), pages 1-25, February.
    3. Fareed, Zeeshan & Pata, Ugur Korkut, 2022. "Renewable, non-renewable energy consumption and income in top ten renewable energy-consuming countries: Advanced Fourier based panel data approaches," Renewable Energy, Elsevier, vol. 194(C), pages 805-821.
    4. Vassilis Stavrakas & Nikos Kleanthis & Alexandros Flamos, 2020. "An Ex-Post Assessment of RES-E Support in Greece by Investigating the Monetary Flows and the Causal Relationships in the Electricity Market," Energies, MDPI, vol. 13(17), pages 1-29, September.
    5. Macedo, Daniela Pereira & Marques, António Cardoso & Damette, Olivier, 2020. "The impact of the integration of renewable energy sources in the electricity price formation: is the Merit-Order Effect occurring in Portugal?," Utilities Policy, Elsevier, vol. 66(C).
    6. Pereira, Diogo Santos & Marques, António Cardoso, 2020. "Could electricity demand contribute to diversifying the mix and mitigating CO2 emissions? A fresh daily analysis of the French electricity system," Energy Policy, Elsevier, vol. 142(C).
    7. Sergio Coronas & Jordi de la Hoz & Àlex Alonso & Helena Martín, 2022. "23 Years of Development of the Solar Power Generation Sector in Spain: A Comprehensive Review of the Period 1998–2020 from a Regulatory Perspective," Energies, MDPI, vol. 15(4), pages 1-53, February.
    8. Marques, António Cardoso & Junqueira, Thibaut Manuel, 2022. "European energy transition: Decomposing the performance of nuclear power," Energy, Elsevier, vol. 245(C).
    9. Saulius Baskutis & Jolanta Baskutiene & Valentinas Navickas & Yuriy Bilan & Wojciech Cieśliński, 2021. "Perspectives and Problems of Using Renewable Energy Sources and Implementation of Local “Green” Initiatives: A Regional Assessment," Energies, MDPI, vol. 14(18), pages 1-16, September.
    10. Fernández-González, Raquel & Puime-Guillén, Félix & Panait, Mirela, 2022. "Multilevel governance, PV solar energy, and entrepreneurship: the generation of green hydrogen as a fuel of renewable origin," Utilities Policy, Elsevier, vol. 79(C).
    11. Yuehong Lu & Zafar A. Khan & Manuel S. Alvarez-Alvarado & Yang Zhang & Zhijia Huang & Muhammad Imran, 2020. "A Critical Review of Sustainable Energy Policies for the Promotion of Renewable Energy Sources," Sustainability, MDPI, vol. 12(12), pages 1-31, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Macedo, Daniela Pereira & Marques, António Cardoso & Damette, Olivier, 2022. "The role of electricity flows and renewable electricity production in the behaviour of electricity prices in Spain," Economic Analysis and Policy, Elsevier, vol. 76(C), pages 885-900.
    2. Kolb, Sebastian & Dillig, Marius & Plankenbühler, Thomas & Karl, Jürgen, 2020. "The impact of renewables on electricity prices in Germany - An update for the years 2014–2018," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    3. Samarth Kumar & David Schönheit & Matthew Schmidt & Dominik Möst, 2019. "Parsing the Effects of Wind and Solar Generation on the German Electricity Trade Surplus," Energies, MDPI, vol. 12(18), pages 1-17, September.
    4. Abban, Abdul Rashid & Hasan, Mohammad Z., 2021. "Solar energy penetration and volatility transmission to electricity markets—An Australian perspective," Economic Analysis and Policy, Elsevier, vol. 69(C), pages 434-449.
    5. Macedo, Daniela Pereira & Marques, António Cardoso & Damette, Olivier, 2021. "The Merit-Order Effect on the Swedish bidding zone with the highest electricity flow in the Elspot market," Energy Economics, Elsevier, vol. 102(C).
    6. Huisman, Ronald & Stet, Cristian, 2022. "The dependence of quantile power prices on supply from renewables," Energy Economics, Elsevier, vol. 105(C).
    7. Panos, Evangelos & Densing, Martin, 2019. "The future developments of the electricity prices in view of the implementation of the Paris Agreements: Will the current trends prevail, or a reversal is ahead?," Energy Economics, Elsevier, vol. 84(C).
    8. Saez, Yago & Mochon, Asuncion & Corona, Luis & Isasi, Pedro, 2019. "Integration in the European electricity market: A machine learning-based convergence analysis for the Central Western Europe region," Energy Policy, Elsevier, vol. 132(C), pages 549-566.
    9. Pereira, Diogo Santos & Marques, António Cardoso, 2020. "How should price-responsive electricity tariffs evolve? An analysis of the German net demand case," Utilities Policy, Elsevier, vol. 66(C).
    10. Bublitz, Andreas & Keles, Dogan & Zimmermann, Florian & Fraunholz, Christoph & Fichtner, Wolf, 2019. "A survey on electricity market design: Insights from theory and real-world implementations of capacity remuneration mechanisms," Energy Economics, Elsevier, vol. 80(C), pages 1059-1078.
    11. Macedo, Daniela Pereira & Marques, António Cardoso & Damette, Olivier, 2020. "The impact of the integration of renewable energy sources in the electricity price formation: is the Merit-Order Effect occurring in Portugal?," Utilities Policy, Elsevier, vol. 66(C).
    12. Bublitz, Andreas & Keles, Dogan & Zimmermann, Florian & Fraunholz, Christoph & Fichtner, Wolf, 2018. "A survey on electricity market design: Insights from theory and real-world implementations of capacity remuneration mechanisms," Working Paper Series in Production and Energy 27, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    13. Komorowska, Aleksandra & Benalcazar, Pablo & Kaszyński, Przemysław & Kamiński, Jacek, 2020. "Economic consequences of a capacity market implementation: The case of Poland," Energy Policy, Elsevier, vol. 144(C).
    14. Michele Fiorelli & Dogan Keles & Francesco Montana & Giovanni Lorenzo Restifo & Eleonora Riva Sanseverino & Gaetano Zizzo, 2020. "Evaluation of the Administrative Phase-Out of Coal Power Plants on the Italian Electricity Market," Energies, MDPI, vol. 13(18), pages 1-24, September.
    15. Bell, William Paul & Wild, Phillip & Foster, John & Hewson, Michael, 2017. "Revitalising the wind power induced merit order effect to reduce wholesale and retail electricity prices in Australia," Energy Economics, Elsevier, vol. 67(C), pages 224-241.
    16. Russo, Marianna & Kraft, Emil & Bertsch, Valentin & Keles, Dogan, 2022. "Short-term risk management of electricity retailers under rising shares of decentralized solar generation," Energy Economics, Elsevier, vol. 109(C).
    17. Simshauser, Paul, 2020. "Merchant renewables and the valuation of peaking plant in energy-only markets," Energy Economics, Elsevier, vol. 91(C).
    18. Vassilis Stavrakas & Nikos Kleanthis & Alexandros Flamos, 2020. "An Ex-Post Assessment of RES-E Support in Greece by Investigating the Monetary Flows and the Causal Relationships in the Electricity Market," Energies, MDPI, vol. 13(17), pages 1-29, September.
    19. Ibanez-Lopez, A.S. & Moratilla-Soria, B.Y., 2017. "An assessment of Spain's new alternative energy support framework and its long-term impact on wind power development and system costs through behavioral dynamic simulation," Energy, Elsevier, vol. 138(C), pages 629-646.
    20. Marques, António Cardoso & Fuinhas, José Alberto & Nunes, André Roque, 2016. "Electricity generation mix and economic growth: What role is being played by nuclear sources and carbon dioxide emissions in France?," Energy Policy, Elsevier, vol. 92(C), pages 7-19.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:juipol:v:56:y:2019:i:c:p:159-168. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.sciencedirect.com/journal/utilities-policy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.