IDEAS home Printed from https://ideas.repec.org/a/eee/jrpoli/v68y2020ics0301420720300349.html
   My bibliography  Save this article

Iran in the emerging global natural gas market: A scenario-based competitive analysis and policy assessment

Author

Listed:
  • Hafezi, Reza
  • Wood, David A.
  • Akhavan, Amir Naser
  • Pakseresht, Saeed

Abstract

Price fluctuations, environmental concerns, technological development, unconventional resources, energy security challenges, and shipping availability are some of the forces that have contributed to energy markets becoming more dynamic and complex in the last decade. This research analyzes the global natural gas market (GNGM) situation for the case of the National Iranian Gas Company. Iran as the owner of the second-largest natural gas proved reserves strives to enhance its market share in the GNGM. Recently, international gas markets are gradually evolving from traditional local/regional markets into a more interconnected GNGM. A comprehensive competitive analysis, Porter's five forces, scenario-based planning model is proposed and developed. It assesses the current status and trends associated with the GNGM applying its findings to provide insights into how Iran might potentially expand its share of the GNGM. The GNGM five-forces-based scenario analysis conducted focuses upon and presents: (1) Rivalry among existing participants; (2) Bargaining power of suppliers; (3) Bargaining power of buyers; (4) Threats from new entrants and (5) Threats from substitutes. The proposed scenario-based competitive analysis reveals three key strategies that should protect Iran's position in the evolving energy markets and promote its future share of the GNGM.

Suggested Citation

  • Hafezi, Reza & Wood, David A. & Akhavan, Amir Naser & Pakseresht, Saeed, 2020. "Iran in the emerging global natural gas market: A scenario-based competitive analysis and policy assessment," Resources Policy, Elsevier, vol. 68(C).
  • Handle: RePEc:eee:jrpoli:v:68:y:2020:i:c:s0301420720300349
    DOI: 10.1016/j.resourpol.2020.101790
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301420720300349
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resourpol.2020.101790?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Batten, Jonathan A. & Ciner, Cetin & Lucey, Brian M., 2017. "The dynamic linkages between crude oil and natural gas markets," Energy Economics, Elsevier, vol. 62(C), pages 155-170.
    2. Reza Hafezi & Amir Naser Akhavan & Mazdak Zamani & Saeed Pakseresht & Shahaboddin Shamshirband, 2019. "Developing a Data Mining Based Model to Extract Predictor Factors in Energy Systems: Application of Global Natural Gas Demand," Energies, MDPI, vol. 12(21), pages 1-22, October.
    3. Srinivasan Balakrishnan & Birger Wernerfelt, 1986. "Technical change, competition and vertical integration," Strategic Management Journal, Wiley Blackwell, vol. 7(4), pages 347-359, July.
    4. Furlan, Claudia & Mortarino, Cinzia, 2018. "Forecasting the impact of renewable energies in competition with non-renewable sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1879-1886.
    5. Makky, Ahmed Al & Alaswad, A & Gibson, Desmond & Olabi, A.G, 2017. "Renewable energy scenario and environmental aspects of soil emission measurements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1157-1173.
    6. Yanrui Wu, . "Gas Market Integration: Global Trends and Implications for the EAS Region," Chapters,, Economic Research Institute for ASEAN and East Asia (ERIA).
    7. Ciarreta, Aitor & Espinosa, Maria Paz & Pizarro-Irizar, Cristina, 2017. "Has renewable energy induced competitive behavior in the Spanish electricity market?," Energy Policy, Elsevier, vol. 104(C), pages 171-182.
    8. Laugs, Gideon A.H. & Moll, Henri C., 2017. "A review of the bandwidth and environmental discourses of future energy scenarios: Shades of green and gray," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 520-530.
    9. Yunna, Wu & Yisheng, Yang, 2014. "The competition situation analysis of shale gas industry in China: Applying Porter’s five forces and scenario model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 798-805.
    10. Egging, Ruud & Pichler, Alois & Kalvø, Øyvind Iversen & Walle–Hansen, Thomas Meyer, 2017. "Risk aversion in imperfect natural gas markets," European Journal of Operational Research, Elsevier, vol. 259(1), pages 367-383.
    11. Eser, P. & Chokani, N. & Abhari, R., 2019. "Impact of Nord Stream 2 and LNG on gas trade and security of supply in the European gas network of 2030," Applied Energy, Elsevier, vol. 238(C), pages 816-830.
    12. Philip ANDREWS-SPEED, 2011. "Energy Market Integration in East Asia: A Regional Public Goods Approach," Working Papers DP-2011-06, Economic Research Institute for ASEAN and East Asia (ERIA).
    13. Caporin, Massimiliano & Fontini, Fulvio, 2017. "The long-run oil–natural gas price relationship and the shale gas revolution," Energy Economics, Elsevier, vol. 64(C), pages 511-519.
    14. Zhao, Zhen-Yu & Zuo, Jian & Wu, Pan-Hao & Yan, Hong & Zillante, George, 2016. "Competitiveness assessment of the biomass power generation industry in China: A five forces model study," Renewable Energy, Elsevier, vol. 89(C), pages 144-153.
    15. Xunpeng, Shi & Variam, Hari Malamakkavu Padinjare & Tao, Jacqueline, 2017. "Global impact of uncertainties in China’s gas market," Energy Policy, Elsevier, vol. 104(C), pages 382-394.
    16. Tokimatsu, Koji & Yasuoka, Rieko & Nishio, Masahiro, 2017. "Global zero emissions scenarios: The role of biomass energy with carbon capture and storage by forested land use," Applied Energy, Elsevier, vol. 185(P2), pages 1899-1906.
    17. Dieckhöner, Caroline & Lochner, Stefan & Lindenberger, Dietmar, 2013. "European natural gas infrastructure: The impact of market developments on gas flows and physical market integration," Applied Energy, Elsevier, vol. 102(C), pages 994-1003.
    18. Alipour, Mohammad & Hafezi, Reza & Ervural, Bilal & Kaviani, Mohamad Amin & Kabak, Özgür, 2018. "Long-term policy evaluation: Application of a new robust decision framework for Iran's energy exports security," Energy, Elsevier, vol. 157(C), pages 914-931.
    19. Shi, Xunpeng & Variam, Hari M.P., 2017. "East Asia’s gas-market failure and distinctive economics—A case study of low oil prices," Applied Energy, Elsevier, vol. 195(C), pages 800-809.
    20. Sun, Mei & Wang, Yaqi & Gao, Cuixia, 2016. "Visibility graph network analysis of natural gas price: The case of North American market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 1-11.
    21. Hulshof, Daan & van der Maat, Jan-Pieter & Mulder, Machiel, 2016. "Market fundamentals, competition and natural-gas prices," Energy Policy, Elsevier, vol. 94(C), pages 480-491.
    22. Alipour, M. & Alighaleh, S. & Hafezi, R. & Omranievardi, M., 2017. "A new hybrid decision framework for prioritizing funding allocation to Iran's energy sector," Energy, Elsevier, vol. 121(C), pages 388-402.
    23. Bentham, Jeremy, 2014. "The scenario approach to possible futures for oil and natural gas," Energy Policy, Elsevier, vol. 64(C), pages 87-92.
    24. Simon Schulte and Florian Weiser, 2019. "Natural Gas Transits and Market Power: The Case of Turkey," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    25. Hafezi, Reza & Akhavan, AmirNaser & Pakseresht, Saeed & Wood, David A., 2019. "A Layered Uncertainties Scenario Synthesizing (LUSS) model applied to evaluate multiple potential long-run outcomes for Iran's natural gas exports," Energy, Elsevier, vol. 169(C), pages 646-659.
    26. Hax, Arnoldo & Wilde II, Dean, 2001. "The Delta Model -- discovering new sources of profitability in a networked economy," European Management Journal, Elsevier, vol. 19(4), pages 379-391, August.
    27. Alipour, M. & Hafezi, R. & Amer, M. & Akhavan, A.N., 2017. "A new hybrid fuzzy cognitive map-based scenario planning approach for Iran's oil production pathways in the post–sanction period," Energy, Elsevier, vol. 135(C), pages 851-864.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hafezi, Reza & Akhavan, AmirNaser & Pakseresht, Saeed & A. Wood, David, 2021. "Global natural gas demand to 2025: A learning scenario development model," Energy, Elsevier, vol. 224(C).
    2. Natalia Iwaszczuk & Jacek Wolak & Aleksander Iwaszczuk, 2021. "Turkmenistan’s Gas Sector Development Scenarios Based on Econometric and SWOT Analysis," Energies, MDPI, vol. 14(10), pages 1-18, May.
    3. Wang, Xiaolin & Qiu, Yangyang & Chen, Jun & Hu, Xiangping, 2022. "Evaluating natural gas supply security in China: An exhaustible resource market equilibrium model," Resources Policy, Elsevier, vol. 76(C).
    4. Souhankar, Amirhossein & Mortezaee, Ahmad & Hafezi, Reza, 2023. "Potentials for energy-saving and efficiency capacities in Iran: An interpretive structural model to prioritize future national policies," Energy, Elsevier, vol. 262(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hafezi, Reza & Akhavan, AmirNaser & Pakseresht, Saeed & A. Wood, David, 2021. "Global natural gas demand to 2025: A learning scenario development model," Energy, Elsevier, vol. 224(C).
    2. Hafezi, Reza & Akhavan, AmirNaser & Pakseresht, Saeed & Wood, David A., 2019. "A Layered Uncertainties Scenario Synthesizing (LUSS) model applied to evaluate multiple potential long-run outcomes for Iran's natural gas exports," Energy, Elsevier, vol. 169(C), pages 646-659.
    3. Alipour, M. & Hafezi, R. & Rani, Pratibha & Hafezi, Mehdi & Mardani, Abbas, 2021. "A new Pythagorean fuzzy-based decision-making method through entropy measure for fuel cell and hydrogen components supplier selection," Energy, Elsevier, vol. 234(C).
    4. Reza Hafezi & Amir Naser Akhavan & Mazdak Zamani & Saeed Pakseresht & Shahaboddin Shamshirband, 2019. "Developing a Data Mining Based Model to Extract Predictor Factors in Energy Systems: Application of Global Natural Gas Demand," Energies, MDPI, vol. 12(21), pages 1-22, October.
    5. Zhang, Dayong & Wang, Tiantian & Shi, Xunpeng & Liu, Jia, 2018. "Is hub-based pricing a better choice than oil indexation for natural gas? Evidence from a multiple bubble test," Energy Economics, Elsevier, vol. 76(C), pages 495-503.
    6. Miao, Xiaoyu & Wang, Qunwei & Dai, Xingyu, 2022. "Is oil-gas price decoupling happening in China? A multi-scale quantile-on-quantile approach," International Review of Economics & Finance, Elsevier, vol. 77(C), pages 450-470.
    7. Zhang, Lingge & Yang, Dong & Wu, Shining & Luo, Meifeng, 2023. "Revisiting the pricing benchmarks for Asian LNG — An equilibrium analysis," Energy, Elsevier, vol. 262(PA).
    8. Riepin, Iegor & Schmidt, Matthew & Baringo, Luis & Müsgens, Felix, 2022. "Adaptive robust optimization for European strategic gas infrastructure planning," Applied Energy, Elsevier, vol. 324(C).
    9. Zhang, Dayong & Ji, Qiang, 2018. "Further evidence on the debate of oil-gas price decoupling: A long memory approach," Energy Policy, Elsevier, vol. 113(C), pages 68-75.
    10. Hailemariam, Abebe & Smyth, Russell, 2019. "What drives volatility in natural gas prices?," Energy Economics, Elsevier, vol. 80(C), pages 731-742.
    11. Devine, Mel T. & Russo, Marianna, 2019. "Liquefied natural gas and gas storage valuation: Lessons from the integrated Irish and UK markets," Applied Energy, Elsevier, vol. 238(C), pages 1389-1406.
    12. Gao, Shen & Hou, Chenghan & Nguyen, Bao H., 2021. "Forecasting natural gas prices using highly flexible time-varying parameter models," Economic Modelling, Elsevier, vol. 105(C).
    13. Gao, Shen & Hou, Chenghan & Nguyen, Bao H., 2020. "Forecasting natural gas prices using highly flexible time-varying parameter models," Working Papers 2020-01, University of Tasmania, Tasmanian School of Business and Economics.
    14. Sesini, Marzia & Giarola, Sara & Hawkes, Adam D., 2020. "The impact of liquefied natural gas and storage on the EU natural gas infrastructure resilience," Energy, Elsevier, vol. 209(C).
    15. Shi, Xunpeng & Variam, Hari Malamakkavu Padinjare & Shen, Yifan, 2019. "Trans-ASEAN gas pipeline and ASEAN gas market integration: Insights from a scenario analysis," Energy Policy, Elsevier, vol. 132(C), pages 83-95.
    16. Ghaboulian Zare, Sara & Alipour, Mohammad & Hafezi, Mehdi & Stewart, Rodney A. & Rahman, Anisur, 2022. "Examining wind energy deployment pathways in complex macro-economic and political settings using a fuzzy cognitive map-based method," Energy, Elsevier, vol. 238(PA).
    17. Min Fu & Yang Yang & Lixin Tian & Zaili Zhen, 2017. "The Spatiotemporal Dynamics of Natural Gas Imports in OECD Countries," Sustainability, MDPI, vol. 9(11), pages 1-19, November.
    18. Zhang, Dayong & Shi, Min & Shi, Xunpeng, 2018. "Oil indexation, market fundamentals, and natural gas prices: An investigation of the Asian premium in natural gas trade," Energy Economics, Elsevier, vol. 69(C), pages 33-41.
    19. Ribeiro Scarcioffolo, Alexandre & Etienne, Xiaoli L., 2018. "Does Economic Policy Uncertainty Affect Energy Market Volatility and Vice-Versa?," 2018 Annual Meeting, August 5-7, Washington, D.C. 273976, Agricultural and Applied Economics Association.
    20. Souhankar, Amirhossein & Mortezaee, Ahmad & Hafezi, Reza, 2023. "Potentials for energy-saving and efficiency capacities in Iran: An interpretive structural model to prioritize future national policies," Energy, Elsevier, vol. 262(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:68:y:2020:i:c:s0301420720300349. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30467 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.