IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v96y2021ics0966692321002428.html
   My bibliography  Save this article

Development and application of a dynamic model for road port access and its impacts on port-city relationship indicators

Author

Listed:
  • Caldeira dos Santos, Murillo
  • Pereira, Fábio Henrique

Abstract

Seaports are major intermodal structures in the global supply chain, where multiple stakeholders search for profitable and resilient maritime lines. Shipowners reduce the distance between the northern and southern hemispheres by connecting hub ports. Hosting a global hub port implies competitive advantages to the municipality. However, operational bottlenecks loosen the port-city relationship. One of the main conflicts in this relation is the land port access, a hard-to-be-mapped, random operation. The traffic flow rise noticed in developed countries' ports and, more recently, in emerging markets, causes congestion and air pollutant emissions in terminal surroundings. Current models for road port access are static, single-window non-synchronized truck appointment systems. As a contribution, this case study develops a dynamic model of road port access. Also, it verifies the effectiveness of its application in the port-city relationship indicators in an emerging market global hub port, the Port of Santos, faced with ports of developed countries, prospecting optimal conditions to its implementation in an environment with significant institutional obstacles.

Suggested Citation

  • Caldeira dos Santos, Murillo & Pereira, Fábio Henrique, 2021. "Development and application of a dynamic model for road port access and its impacts on port-city relationship indicators," Journal of Transport Geography, Elsevier, vol. 96(C).
  • Handle: RePEc:eee:jotrge:v:96:y:2021:i:c:s0966692321002428
    DOI: 10.1016/j.jtrangeo.2021.103189
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0966692321002428
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2021.103189?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Namboothiri, Rajeev & Erera, Alan L., 2008. "Planning local container drayage operations given a port access appointment system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 44(2), pages 185-202, March.
    2. Tichavska, Miluše & Tovar, Beatriz, 2015. "Port-city exhaust emission model: An application to cruise and ferry operations in Las Palmas Port," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 347-360.
    3. Ku, Dusan & Arthanari, Tiru S., 2016. "Container relocation problem with time windows for container departure," European Journal of Operational Research, Elsevier, vol. 252(3), pages 1031-1039.
    4. Roar Adland & Fredrik Bjerknes & Christian Herje, 2017. "Spatial efficiency in the bulk freight market," Maritime Policy & Management, Taylor & Francis Journals, vol. 44(4), pages 413-425, May.
    5. Castro-Gonzáles, Segundo & Peña-Vinces, Jesús C. & Guillen, Jorge, 2016. "The competitiveness of Latin-American economies: Consolidation of the double diamond theory," Economic Systems, Elsevier, vol. 40(3), pages 373-386.
    6. Gharehgozli, Amir Hossein & Vernooij, Floris Gerardus & Zaerpour, Nima, 2017. "A simulation study of the performance of twin automated stacking cranes at a seaport container terminal," European Journal of Operational Research, Elsevier, vol. 261(1), pages 108-128.
    7. Daamen, Tom A. & Vries, Isabelle, 2013. "Governing the European port–city interface: institutional impacts on spatial projects between city and port," Journal of Transport Geography, Elsevier, vol. 27(C), pages 4-13.
    8. Liu, Honglu & Tian, Zhihong & Huang, Anqiang & Yang, Zaili, 2018. "Analysis of vulnerabilities in maritime supply chains," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 475-484.
    9. Briskorn, Dirk & Emde, Simon & Boysen, Nils, 2016. "Cooperative twin-crane scheduling," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 109733, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    10. Phan, Mai-Ha & Kim, Kap Hwan, 2016. "Collaborative truck scheduling and appointments for trucking companies and container terminals," Transportation Research Part B: Methodological, Elsevier, vol. 86(C), pages 37-50.
    11. Shan, Jun & Yu, Mingzhu & Lee, Chung-Yee, 2014. "An empirical investigation of the seaport’s economic impact: Evidence from major ports in China," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 69(C), pages 41-53.
    12. Yang, Yi-Chih & Chen, Shu-Ling, 2016. "Determinants of global logistics hub ports: Comparison of the port development policies of Taiwan, Korea, and Japan," Transport Policy, Elsevier, vol. 45(C), pages 179-189.
    13. Schulte, Frederik & Lalla-Ruiz, Eduardo & González-Ramírez, Rosa G. & Voß, Stefan, 2017. "Reducing port-related empty truck emissions: A mathematical approach for truck appointments with collaboration," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 105(C), pages 195-212.
    14. Valentin Carlan & Christa Sys & Thierry Vanelslander & Athena Roumboutsos, 2017. "Digital innovation in the port sector," Competition and Regulation in Network Industries, , vol. 18(1-2), pages 71-93, March.
    15. Amir Hossein Gharehgozli & Debjit Roy & René de Koster, 2016. "Sea container terminals: New technologies and OR models," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 18(2), pages 103-140, June.
    16. Fan, Lei & Wilson, William W. & Dahl, Bruce, 2012. "Congestion, port expansion and spatial competition for US container imports," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(6), pages 1121-1136.
    17. Witte, Patrick & Wiegmans, Bart & van Oort, Frank & Spit, Tejo, 2014. "Governing inland ports: a multi-dimensional approach to addressing inland port–city challenges in European transport corridors," Journal of Transport Geography, Elsevier, vol. 36(C), pages 42-52.
    18. Chen, Gang & Govindan, Kannan & Golias, Mihalis M., 2013. "Reducing truck emissions at container terminals in a low carbon economy: Proposal of a queueing-based bi-objective model for optimizing truck arrival pattern," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 55(C), pages 3-22.
    19. Leonard Heilig & Eduardo Lalla-Ruiz & Stefan Voß, 2017. "Digital transformation in maritime ports: analysis and a game theoretic framework," Netnomics, Springer, vol. 18(2), pages 227-254, December.
    20. Briskorn, Dirk & Emde, Simon & Boysen, Nils, 2016. "Cooperative twin-crane scheduling," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 80780, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    21. Lättilä, Lauri & Henttu, Ville & Hilmola, Olli-Pekka, 2013. "Hinterland operations of sea ports do matter: Dry port usage effects on transportation costs and CO2 emissions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 55(C), pages 23-42.
    22. Monios, Jason & Bergqvist, Rickard & Woxenius, Johan, 2018. "Port-centric cities: The role of freight distribution in defining the port-city relationship," Journal of Transport Geography, Elsevier, vol. 66(C), pages 53-64.
    23. Bottasso, Anna & Conti, Maurizio & Ferrari, Claudio & Tei, Alessio, 2014. "Ports and regional development: A spatial analysis on a panel of European regions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 65(C), pages 44-55.
    24. Zehendner, Elisabeth & Feillet, Dominique, 2014. "Benefits of a truck appointment system on the service quality of inland transport modes at a multimodal container terminal," European Journal of Operational Research, Elsevier, vol. 235(2), pages 461-469.
    25. Chen, Gang & Govindan, Kannan & Yang, Zhongzhen, 2013. "Managing truck arrivals with time windows to alleviate gate congestion at container terminals," International Journal of Production Economics, Elsevier, vol. 141(1), pages 179-188.
    26. Cimen Karatas Cetin & A. Güldem Cerit, 2010. "Organizational effectiveness at seaports: a systems approach," Maritime Policy & Management, Taylor & Francis Journals, vol. 37(3), pages 195-219, May.
    27. Cimpeanu, Radu & Devine, Mel T. & O’Brien, Conor, 2017. "A simulation model for the management and expansion of extended port terminal operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 98(C), pages 105-131.
    28. Cabral, Alexandra Maria Rios & Ramos, Francisco de Sousa, 2014. "Cluster analysis of the competitiveness of container ports in Brazil," Transportation Research Part A: Policy and Practice, Elsevier, vol. 69(C), pages 423-431.
    29. Luo, Jiabin & Wu, Yue, 2015. "Modelling of dual-cycle strategy for container storage and vehicle scheduling problems at automated container terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 79(C), pages 49-64.
    30. Ng, Adolf K.Y. & Padilha, Flavio & Pallis, Athanasios A., 2013. "Institutions, bureaucratic and logistical roles of dry ports: the Brazilian experiences," Journal of Transport Geography, Elsevier, vol. 27(C), pages 46-55.
    31. Woo, Su-Han & Pettit, Stephen J. & Kwak, Dong-Wook & Beresford, Anthony K.C., 2011. "Seaport research: A structured literature review on methodological issues since the 1980s," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(7), pages 667-685, August.
    32. Ducruet, César & Cuyala, Sylvain & El Hosni, Ali, 2018. "Maritime networks as systems of cities: The long-term interdependencies between global shipping flows and urban development (1890–2010)," Journal of Transport Geography, Elsevier, vol. 66(C), pages 340-355.
    33. Mary R. Brooks & Tony Schellinck & Athanasios A. Pallis, 2011. "A systematic approach for evaluating port effectiveness," Maritime Policy & Management, Taylor & Francis Journals, vol. 38(3), pages 315-334, May.
    34. Jiang, Xinjia & Lee, Loo Hay & Chew, Ek Peng & Han, Yongbin & Tan, Kok Choon, 2012. "A container yard storage strategy for improving land utilization and operation efficiency in a transshipment hub port," European Journal of Operational Research, Elsevier, vol. 221(1), pages 64-73.
    35. Lee, Gunwoo & You, Soyoung (Iris) & Ritchie, Stephen G. & Saphores, Jean-Daniel & Jayakrishnan, R. & Ogunseitan, Oladele, 2012. "Assessing air quality and health benefits of the Clean Truck Program in the Alameda corridor, CA," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(8), pages 1177-1193.
    36. Phan, Mai-Ha & Kim, Kap Hwan, 2015. "Negotiating truck arrival times among trucking companies and a container terminal," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 75(C), pages 132-144.
    37. Asgari, Nasrin & Farahani, Reza Zanjirani & Goh, Mark, 2013. "Network design approach for hub ports-shipping companies competition and cooperation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 48(C), pages 1-18.
    38. César Ducruet & Sylvain Cuyala & Ali El Hosni, 2018. "Maritime networks as systems of cities : the long-term interdependencies between global shipping flows and urban development (1890-2010)," Post-Print hal-03246922, HAL.
    39. Nitish Umang & Michel Bierlaire & Alan L. Erera, 2017. "Real-time management of berth allocation with stochastic arrival and handling times," Journal of Scheduling, Springer, vol. 20(1), pages 67-83, February.
    40. Yulai Wan & Anming Zhang & Andrew C.L. Yuen, 2013. "Urban road congestion, capacity expansion and port competition: empirical analysis of US container ports," Maritime Policy & Management, Taylor & Francis Journals, vol. 40(5), pages 417-438, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guo, Jianke & Wang, Ziqi & Yu, Xuhui, 2022. "Accessibility measurement of China's coastal ports from a land-sea coordination perspective - An empirical study," Journal of Transport Geography, Elsevier, vol. 105(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amir Gharehgozli & Nima Zaerpour & Rene Koster, 2020. "Container terminal layout design: transition and future," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 22(4), pages 610-639, December.
    2. Lange, Ann-Kathrin & Nellen, Nicole & Jahn, Carlos, 2022. "Truck appointment systems: How can they be improved and what are their limits?," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Kersten, Wolfgang & Jahn, Carlos & Blecker, Thorsten & Ringle, Christian M. (ed.), Changing Tides: The New Role of Resilience and Sustainability in Logistics and Supply Chain Management – Innovative Approaches for the Shift to a New , volume 33, pages 615-655, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    3. Torkjazi, Mohammad & Huynh, Nathan & Shiri, Samaneh, 2018. "Truck appointment systems considering impact to drayage truck tours," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 116(C), pages 208-228.
    4. Dadashpoor, Hashem & Arasteh, Mojtaba, 2020. "Core-port connectivity: Towards shaping a national hinterland in a West Asia country," Transport Policy, Elsevier, vol. 88(C), pages 57-68.
    5. Li, Dongjun & Dong, Jing-Xin & Song, Dong-Ping & Hicks, Christian & Singh, Surya Prakash, 2020. "Optimal contract design for the exchange of tradable truck permits at multiterminal ports," International Journal of Production Economics, Elsevier, vol. 230(C).
    6. Azab, Ahmed & Morita, Hiroshi, 2022. "The block relocation problem with appointment scheduling," European Journal of Operational Research, Elsevier, vol. 297(2), pages 680-694.
    7. Xiaoju Zhang & Qingcheng Zeng & Zhongzhen Yang, 2019. "Optimization of truck appointments in container terminals," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 21(1), pages 125-145, March.
    8. Mohammad Torkjazi & Nathan Huynh & Ali Asadabadi, 2022. "Modeling the Truck Appointment System as a Multi-Player Game," Logistics, MDPI, vol. 6(3), pages 1-25, July.
    9. Lange, Ann-Kathrin & Kreuz, Felix & Langkau, Sven & Jahn, Carlos & Clausen, Uwe, 2020. "Defining the quota of truck appointment systems," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Jahn, Carlos & Kersten, Wolfgang & Ringle, Christian M. (ed.), Data Science in Maritime and City Logistics: Data-driven Solutions for Logistics and Sustainability. Proceedings of the Hamburg International Conferen, volume 30, pages 211-246, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    10. Zhao, Deng & Zhen-fu, Li & Yu-tao, Zhou & Xiao, Chen & Shan-shan, Liang, 2020. "Measurement and spatial spillover effects of port comprehensive strength: Empirical evidence from China," Transport Policy, Elsevier, vol. 99(C), pages 288-298.
    11. Caballini, Claudia & Gracia, Maria D. & Mar-Ortiz, Julio & Sacone, Simona, 2020. "A combined data mining – optimization approach to manage trucks operations in container terminals with the use of a TAS: Application to an Italian and a Mexican port," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    12. Gharehgozli, Amir & Zaerpour, Nima, 2018. "Stacking outbound barge containers in an automated deep-sea terminal," European Journal of Operational Research, Elsevier, vol. 267(3), pages 977-995.
    13. María D. Gracia & Rosa G. González-Ramírez & Julio Mar-Ortiz, 2017. "The impact of lanes segmentation and booking levels on a container terminal gate congestion," Flexible Services and Manufacturing Journal, Springer, vol. 29(3), pages 403-432, December.
    14. Facchini, F. & Digiesi, S. & Mossa, G., 2020. "Optimal dry port configuration for container terminals: A non-linear model for sustainable decision making," International Journal of Production Economics, Elsevier, vol. 219(C), pages 164-178.
    15. Damla Kizilay & Deniz Türsel Eliiyi, 2021. "A comprehensive review of quay crane scheduling, yard operations and integrations thereof in container terminals," Flexible Services and Manufacturing Journal, Springer, vol. 33(1), pages 1-42, March.
    16. Amir Gharehgozli & Debjit Roy & Suruchika Saini & Jan-Kees Ommeren, 2023. "Loading and unloading trains at the landside of container terminals," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 25(3), pages 549-575, September.
    17. Houming Fan & Xiaoxue Ren & Zhenfeng Guo & Yang Li, 2019. "Truck Scheduling Problem Considering Carbon Emissions under Truck Appointment System," Sustainability, MDPI, vol. 11(22), pages 1-23, November.
    18. Azab, Ahmed & Morita, Hiroshi, 2022. "Coordinating truck appointments with container relocations and retrievals in container terminals under partial appointments information," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 160(C).
    19. Mounir Amdaoud & César Ducruet & Marc-Antoine Faure, 2021. "Port-city linkages and multi-level hinterlands: the case of France," EconomiX Working Papers 2021-29, University of Paris Nanterre, EconomiX.
    20. Wang, Mengyao & Zhou, Chenhao & Wang, Aihu, 2022. "A cluster-based yard template design integrated with yard crane deployment using a placement heuristic," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 160(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:96:y:2021:i:c:s0966692321002428. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.