IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v219y2020icp164-178.html
   My bibliography  Save this article

Optimal dry port configuration for container terminals: A non-linear model for sustainable decision making

Author

Listed:
  • Facchini, F.
  • Digiesi, S.
  • Mossa, G.

Abstract

In recent years the maritime freight transport has rapidly increased, causing congestion in many port areas. In some cases, in order to improve the capacity and the reliability of the temporary storage, a solution, recommended by industry officials, is the expansion of the terminal capacity. When this solution is not available, the ‘dry port’ area represents an effective alternative. The adoption of a dry port, if on one hand leads to benefits on terminal congestion, on the other hand requires resources and investments due to the transport of the container from port to dry port and vice versa. In the evaluation of the strategy to be adopted different aspects shall be evaluated to estimate time required for the container handling inside and outside the terminal on the basis of the congestion degree. In this paper, to support decision makers in identifying the best strategy to be adopted, a mathematical model allowing to identify the number of containers to be stocked in port and/or in dry port is defined considering the intra-/inter-terminal handling of the containers, in order to minimize the overall running costs and of the carbon footprint. The model, based on a computational algorithm for non-linear programming, is able to provide the number of containers to be stocked in port and/or in dry port, ensuring an effective strategy dependent on ‘road’ and ‘non-road' material handling equipment adopted, on the number and size of containers, as well as on the distance from port to dry port. Results obtained from numerical experiments show that, on the basis of the running cost and the carbon footprint of the container handling activities, it is possible to identify the most economic and eco-friendly container handling configuration. The case study of the Port of Bari (Italy) is investigated. In this case, given the overall number of containers to be stocked and the distance between port and dry port, the solutions found by the model identify a configuration able to ensure a reduction of 7% and 11% of the running cost and of the carbon footprint, respectively, when compared to the configuration in which all containers are stored in the port.

Suggested Citation

  • Facchini, F. & Digiesi, S. & Mossa, G., 2020. "Optimal dry port configuration for container terminals: A non-linear model for sustainable decision making," International Journal of Production Economics, Elsevier, vol. 219(C), pages 164-178.
  • Handle: RePEc:eee:proeco:v:219:y:2020:i:c:p:164-178
    DOI: 10.1016/j.ijpe.2019.06.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527319302105
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2019.06.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ku, Dusan & Arthanari, Tiru S., 2016. "Container relocation problem with time windows for container departure," European Journal of Operational Research, Elsevier, vol. 252(3), pages 1031-1039.
    2. Gharehgozli, Amir Hossein & Vernooij, Floris Gerardus & Zaerpour, Nima, 2017. "A simulation study of the performance of twin automated stacking cranes at a seaport container terminal," European Journal of Operational Research, Elsevier, vol. 261(1), pages 108-128.
    3. Boysen, Nils & Emde, Simon, 2016. "The parallel stack loading problem to minimize blockages," European Journal of Operational Research, Elsevier, vol. 249(2), pages 618-627.
    4. Dung-Ying Lin & Chia-Wei Chiang, 2017. "The Storage Space Allocation Problem at a Container Terminal," Maritime Policy & Management, Taylor & Francis Journals, vol. 44(6), pages 685-704, August.
    5. Boysen, Nils & Emde, Simon, 2016. "The parallel stack loading problem to minimize blockages," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 79433, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    6. Roso, Violeta & Woxenius, Johan & Lumsden, Kenth, 2009. "The dry port concept: connecting container seaports with the hinterland," Journal of Transport Geography, Elsevier, vol. 17(5), pages 338-345.
    7. Meisel, Frank & Bierwirth, Christian, 2009. "Heuristics for the integration of crane productivity in the berth allocation problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 45(1), pages 196-209, January.
    8. Giorgos E. Konstantzos & Georgios K. D. Saharidis & Maria Loizidou, 2017. "Development of a model for assessing Greenhouse Gas (GHG) emissions from terminal and drayage operations," Operational Research, Springer, vol. 17(3), pages 807-819, October.
    9. Bierwirth, Christian & Meisel, Frank, 2015. "A follow-up survey of berth allocation and quay crane scheduling problems in container terminals," European Journal of Operational Research, Elsevier, vol. 244(3), pages 675-689.
    10. Yun Peng & Wenyuan Wang & Ke Liu & Xiangda Li & Qi Tian, 2018. "The Impact of the Allocation of Facilities on Reducing Carbon Emissions from a Green Container Terminal Perspective," Sustainability, MDPI, vol. 10(6), pages 1-19, May.
    11. Zehendner, Elisabeth & Feillet, Dominique & Jaillet, Patrick, 2017. "An algorithm with performance guarantee for the Online Container Relocation Problem," European Journal of Operational Research, Elsevier, vol. 259(1), pages 48-62.
    12. Phan, Mai-Ha & Kim, Kap Hwan, 2016. "Collaborative truck scheduling and appointments for trucking companies and container terminals," Transportation Research Part B: Methodological, Elsevier, vol. 86(C), pages 37-50.
    13. A.M. Fogheri, 2015. "Energy Efficiency in Public Buildings," Rivista economica del Mezzogiorno, Società editrice il Mulino, issue 3-4, pages 763-784.
    14. Lehnfeld, Jana & Knust, Sigrid, 2014. "Loading, unloading and premarshalling of stacks in storage areas: Survey and classification," European Journal of Operational Research, Elsevier, vol. 239(2), pages 297-312.
    15. Madeira, Armando Gonçalves & Cardoso, Moacyr Machado & Belderrain, Mischel Carmen Neyra & Correia, Anderson Ribeiro & Schwanz, Silvia Helena, 2012. "Multicriteria and multivariate analysis for port performance evaluation," International Journal of Production Economics, Elsevier, vol. 140(1), pages 450-456.
    16. Carlo, Héctor J. & Vis, Iris F.A. & Roodbergen, Kees Jan, 2014. "Storage yard operations in container terminals: Literature overview, trends, and research directions," European Journal of Operational Research, Elsevier, vol. 235(2), pages 412-430.
    17. Ting, Ching-Jung & Wu, Kun-Chih, 2017. "Optimizing container relocation operations at container yards with beam search," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 103(C), pages 17-31.
    18. Pellegram, A., 2001. "Strategic land use planning for freight: the experience of the Port of London Authority, 1994-1999," Transport Policy, Elsevier, vol. 8(1), pages 11-18, January.
    19. C J L Yewlett, 2001. "OR in strategic land-use planning," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 52(1), pages 4-13, January.
    20. Türkoğulları, Yavuz B. & Taşkın, Z. Caner & Aras, Necati & Altınel, İ. Kuban, 2016. "Optimal berth allocation, time-variant quay crane assignment and scheduling with crane setups in container terminals," European Journal of Operational Research, Elsevier, vol. 254(3), pages 985-1001.
    21. Carlo, Héctor J. & Vis, Iris F.A. & Roodbergen, Kees Jan, 2014. "Transport operations in container terminals: Literature overview, trends, research directions and classification scheme," European Journal of Operational Research, Elsevier, vol. 236(1), pages 1-13.
    22. Mihalis M Golias & Georgios K Saharidis & Maria Boile & Sotirios Theofanis & Marianthi G Ierapetritou, 2009. "The berth allocation problem: Optimizing vessel arrival time," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 11(4), pages 358-377, December.
    23. Zehendner, Elisabeth & Feillet, Dominique, 2014. "Benefits of a truck appointment system on the service quality of inland transport modes at a multimodal container terminal," European Journal of Operational Research, Elsevier, vol. 235(2), pages 461-469.
    24. A. Ballis & J. Golias & C. Abarkoumkin, 1997. "A comparison between conventional and advanced handling systems for low volume container maritime terminals," Maritime Policy & Management, Taylor & Francis Journals, vol. 24(1), pages 73-92, January.
    25. Wilmsmeier, Gordon & Monios, Jason & Lambert, Bruce, 2011. "The directional development of intermodal freight corridors in relation to inland terminals," Journal of Transport Geography, Elsevier, vol. 19(6), pages 1379-1386.
    26. Agra, Agostinho & Oliveira, Maryse, 2018. "MIP approaches for the integrated berth allocation and quay crane assignment and scheduling problem," European Journal of Operational Research, Elsevier, vol. 264(1), pages 138-148.
    27. Talley, Wayne K., 2014. "Maritime transport chains: carrier, port and shipper choice effects," International Journal of Production Economics, Elsevier, vol. 151(C), pages 174-179.
    28. Chen, Lu & Lu, Zhiqiang, 2012. "The storage location assignment problem for outbound containers in a maritime terminal," International Journal of Production Economics, Elsevier, vol. 135(1), pages 73-80.
    29. Jonas Ahmt & Jonas Skott Sigtenbjerggaard & Richard Martin Lusby & Jesper Larsen & David Ryan, 2016. "A new approach to the Container Positioning Problem," Flexible Services and Manufacturing Journal, Springer, vol. 28(4), pages 617-643, December.
    30. Carlotta Mummolo & Sukyung Park & Luigi Mangialardi & Joo H. Kim, 2016. "Computational evaluation of load carriage effects on gait balance stability," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 19(11), pages 1127-1136, August.
    31. Iris, Çağatay & Pacino, Dario & Ropke, Stefan & Larsen, Allan, 2015. "Integrated Berth Allocation and Quay Crane Assignment Problem: Set partitioning models and computational results," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 81(C), pages 75-97.
    32. Akash Gupta & Debjit Roy & René de Koster & Sampanna Parhi, 2017. "Optimal stack layout in a sea container terminal with automated lifting vehicles," International Journal of Production Research, Taylor & Francis Journals, vol. 55(13), pages 3747-3765, July.
    33. Phan, Mai-Ha & Kim, Kap Hwan, 2015. "Negotiating truck arrival times among trucking companies and a container terminal," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 75(C), pages 132-144.
    34. Chen, Lu & Langevin, André & Lu, Zhiqiang, 2013. "Integrated scheduling of crane handling and truck transportation in a maritime container terminal," European Journal of Operational Research, Elsevier, vol. 225(1), pages 142-152.
    35. Gharehgozli, Amir & Zaerpour, Nima, 2018. "Stacking outbound barge containers in an automated deep-sea terminal," European Journal of Operational Research, Elsevier, vol. 267(3), pages 977-995.
    36. Bask, Anu & Roso, Violeta & Andersson, Dan & Hämäläinen, Erkki, 2014. "Development of seaport–dry port dyads: two cases from Northern Europe," Journal of Transport Geography, Elsevier, vol. 39(C), pages 85-95.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ercan Kurtulus & Ismail Bilge Cetin, 2019. "Assessing the Environmental Benefits of Dry Port Usage: A Case of Inland Container Transport in Turkey," Sustainability, MDPI, vol. 11(23), pages 1-16, November.
    2. Snežana Tadić & Mladen Krstić & Violeta Roso & Nikolina Brnjac, 2020. "Dry Port Terminal Location Selection by Applying the Hybrid Grey MCDM Model," Sustainability, MDPI, vol. 12(17), pages 1-22, August.
    3. Gang Ren & Xiaohan Wang & Jiaxin Cai & Shujuan Guo, 2021. "Allocation and Scheduling of Handling Resources in the Railway Container Terminal Based on Crossing Crane Area," Sustainability, MDPI, vol. 13(3), pages 1-24, January.
    4. Zellalem Tadesse Beyene & Simon Peter Nadeem & Matiwos Ensermu Jaleta & Andre Kreie, 2023. "Research Trends in Dry Port Sustainability: A Bibliometric Analysis," Sustainability, MDPI, vol. 16(1), pages 1-24, December.
    5. Elham Ziar & Mehdi Seifbarghy & Mahdi Bashiri & Benny Tjahjono, 2023. "An efficient environmentally friendly transportation network design via dry ports: a bi-level programming approach," Annals of Operations Research, Springer, vol. 322(2), pages 1143-1166, March.
    6. Chen, Rui & Meng, Qiang & Jia, Peng, 2022. "Container port drayage operations and management: Past and future," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gharehgozli, Amir & Zaerpour, Nima, 2018. "Stacking outbound barge containers in an automated deep-sea terminal," European Journal of Operational Research, Elsevier, vol. 267(3), pages 977-995.
    2. Raeesi, Ramin & Sahebjamnia, Navid & Mansouri, S. Afshin, 2023. "The synergistic effect of operational research and big data analytics in greening container terminal operations: A review and future directions," European Journal of Operational Research, Elsevier, vol. 310(3), pages 943-973.
    3. Damla Kizilay & Deniz Türsel Eliiyi, 2021. "A comprehensive review of quay crane scheduling, yard operations and integrations thereof in container terminals," Flexible Services and Manufacturing Journal, Springer, vol. 33(1), pages 1-42, March.
    4. Amir Gharehgozli & Nima Zaerpour & Rene Koster, 2020. "Container terminal layout design: transition and future," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 22(4), pages 610-639, December.
    5. Gharehgozli, Amir & Yu, Yugang & de Koster, René & Du, Shaofu, 2019. "Sequencing storage and retrieval requests in a container block with multiple open locations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 125(C), pages 261-284.
    6. Rodrigues, Filipe & Agra, Agostinho, 2022. "Berth allocation and quay crane assignment/scheduling problem under uncertainty: A survey," European Journal of Operational Research, Elsevier, vol. 303(2), pages 501-524.
    7. Feng, Yuanjun & Song, Dong-Ping & Li, Dong, 2022. "Smart stacking for import containers using customer information at automated container terminals," European Journal of Operational Research, Elsevier, vol. 301(2), pages 502-522.
    8. Azab, Ahmed & Morita, Hiroshi, 2022. "Coordinating truck appointments with container relocations and retrievals in container terminals under partial appointments information," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 160(C).
    9. Zhen, Lu & Zhuge, Dan & Wang, Shuaian & Wang, Kai, 2022. "Integrated berth and yard space allocation under uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 1-27.
    10. Lange, Ann-Kathrin & Kreuz, Felix & Langkau, Sven & Jahn, Carlos & Clausen, Uwe, 2020. "Defining the quota of truck appointment systems," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Jahn, Carlos & Kersten, Wolfgang & Ringle, Christian M. (ed.), Data Science in Maritime and City Logistics: Data-driven Solutions for Logistics and Sustainability. Proceedings of the Hamburg International Conferen, volume 30, pages 211-246, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    11. Sung Won Cho & Hyun Ji Park & Chulung Lee, 2021. "An integrated method for berth allocation and quay crane assignment to allow for reassignment of vessels to other terminals," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 23(1), pages 123-153, March.
    12. Lennart Zey & Dirk Briskorn & Nils Boysen, 2022. "Twin-crane scheduling during seaside workload peaks with a dedicated handshake area," Journal of Scheduling, Springer, vol. 25(1), pages 3-34, February.
    13. Caldeira dos Santos, Murillo & Pereira, Fábio Henrique, 2021. "Development and application of a dynamic model for road port access and its impacts on port-city relationship indicators," Journal of Transport Geography, Elsevier, vol. 96(C).
    14. Feng, Yuanjun & Song, Dong-Ping & Li, Dong & Xie, Ying, 2022. "Service fairness and value of customer information for the stochastic container relocation problem under flexible service policy," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).
    15. Correcher, Juan F. & Alvarez-Valdes, Ramon & Tamarit, Jose M., 2019. "New exact methods for the time-invariant berth allocation and quay crane assignment problem," European Journal of Operational Research, Elsevier, vol. 275(1), pages 80-92.
    16. Mar-Ortiz, Julio & Castillo-García, Norberto & Gracia, María D., 2020. "A decision support system for a capacity management problem at a container terminal," International Journal of Production Economics, Elsevier, vol. 222(C).
    17. Zhou, Chenhao & Wang, Wencheng & Li, Haobin, 2020. "Container reshuffling considered space allocation problem in container terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 136(C).
    18. Liu, Changchun, 2020. "Iterative heuristic for simultaneous allocations of berths, quay cranes, and yards under practical situations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    19. Feng, Yuanjun & Song, Dong-Ping & Li, Dong & Zeng, Qingcheng, 2020. "The stochastic container relocation problem with flexible service policies," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 116-163.
    20. Azab, Ahmed & Morita, Hiroshi, 2022. "The block relocation problem with appointment scheduling," European Journal of Operational Research, Elsevier, vol. 297(2), pages 680-694.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:219:y:2020:i:c:p:164-178. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.