IDEAS home Printed from https://ideas.repec.org/a/spr/operea/v17y2017i3d10.1007_s12351-016-0242-0.html
   My bibliography  Save this article

Development of a model for assessing Greenhouse Gas (GHG) emissions from terminal and drayage operations

Author

Listed:
  • Giorgos E. Konstantzos

    (National Technical University of Athens)

  • Georgios K. D. Saharidis

    (University of Thessaly)

  • Maria Loizidou

    (National Technical University of Athens)

Abstract

Within a seaport terminal, the main sources of emissions include (1) building use and maintenance, (2) ocean-going vessels and harbour crafts, (3) cargo handling equipment and (4) heavy-duty vehicles (HDV) used for the transportation of the containers (which considered to be one of the most polluting elements of port operations). The main objective of this work was the development of a mathematical model for the quantification of Greenhouse Gas emissions produced by HDV during container transport in ports. Several models and tools have been developed for this purpose; however most of them utilize an over-simplified fuel and energy consumption-based approach. Firstly, a critical review of emissions calculations models was performed, and following the results of this analysis COPERT was chosen to be used as a basis for modeling the fleet in port operation. The next step was to analyse in depth COPERT’s methodology and equations in order to identify potential limitations. The following step was to evaluate and address those limitations by introducing new elements and factors (e.g. emissions from stop-and-go traffic, idling, emissions increase due to air conditioning operation etc.). The final step was the modification of COPERT’s equation and the development of the improved model.

Suggested Citation

  • Giorgos E. Konstantzos & Georgios K. D. Saharidis & Maria Loizidou, 2017. "Development of a model for assessing Greenhouse Gas (GHG) emissions from terminal and drayage operations," Operational Research, Springer, vol. 17(3), pages 807-819, October.
  • Handle: RePEc:spr:operea:v:17:y:2017:i:3:d:10.1007_s12351-016-0242-0
    DOI: 10.1007/s12351-016-0242-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12351-016-0242-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12351-016-0242-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Gang & Govindan, Kannan & Golias, Mihalis M., 2013. "Reducing truck emissions at container terminals in a low carbon economy: Proposal of a queueing-based bi-objective model for optimizing truck arrival pattern," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 55(C), pages 3-22.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lingli Wang & Chuanxu Wang & Rongbing Huang, 2022. "Port-based supply chain decisions considering governmental pollution tax," Operational Research, Springer, vol. 22(5), pages 4769-4800, November.
    2. Chassiakos, Anastasios & Jula, Hossein & VanderBeek, Timothy, 2018. "Dynamic Scheduling of Chassis Movements with Chassis Processing Facilities in the Loop," Institute of Transportation Studies, Working Paper Series qt1gt9w6wc, Institute of Transportation Studies, UC Davis.
    3. Chen, Rui & Meng, Qiang & Jia, Peng, 2022. "Container port drayage operations and management: Past and future," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
    4. Facchini, F. & Digiesi, S. & Mossa, G., 2020. "Optimal dry port configuration for container terminals: A non-linear model for sustainable decision making," International Journal of Production Economics, Elsevier, vol. 219(C), pages 164-178.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nanxi Wang & Daofang Chang & Xiaowei Shi & Jun Yuan & Yinping Gao, 2019. "Analysis and Design of Typical Automated Container Terminals Layout Considering Carbon Emissions," Sustainability, MDPI, vol. 11(10), pages 1-40, May.
    2. Tareq Abu Aisha & Mustapha Ouhimmou & Marc Paquet, 2020. "Optimization of Container Terminal Layouts in the Seaport—Case of Port of Montreal," Sustainability, MDPI, vol. 12(3), pages 1-20, February.
    3. Lange, Ann-Kathrin & Kreuz, Felix & Langkau, Sven & Jahn, Carlos & Clausen, Uwe, 2020. "Defining the quota of truck appointment systems," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Jahn, Carlos & Kersten, Wolfgang & Ringle, Christian M. (ed.), Data Science in Maritime and City Logistics: Data-driven Solutions for Logistics and Sustainability. Proceedings of the Hamburg International Conferen, volume 30, pages 211-246, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    4. Ngoc Anh Dung Do & Izabela Ewa Nielsen & Gang Chen & Peter Nielsen, 2016. "A simulation-based genetic algorithm approach for reducing emissions from import container pick-up operation at container terminal," Annals of Operations Research, Springer, vol. 242(2), pages 285-301, July.
    5. Caballini, Claudia & Gracia, Maria D. & Mar-Ortiz, Julio & Sacone, Simona, 2020. "A combined data mining – optimization approach to manage trucks operations in container terminals with the use of a TAS: Application to an Italian and a Mexican port," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    6. Maria Giuffrida & Riccardo Mangiaracina & Umar Burki, 2021. "Cloud-Based Booking Platforms in Warehouse Operations," Sustainability, MDPI, vol. 13(20), pages 1-16, October.
    7. Zajac, Sandra & Huber, Sandra, 2021. "Objectives and methods in multi-objective routing problems: a survey and classification scheme," European Journal of Operational Research, Elsevier, vol. 290(1), pages 1-25.
    8. Caldeira dos Santos, Murillo & Pereira, Fábio Henrique, 2021. "Development and application of a dynamic model for road port access and its impacts on port-city relationship indicators," Journal of Transport Geography, Elsevier, vol. 96(C).
    9. Wang, Hua & Meng, Qiang & Zhang, Xiaoning, 2020. "Multiple equilibrium behaviors of auto travellers and a freight carrier under the cordon-based large-truck restriction regulation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 134(C).
    10. Feng, Yuanjun & Song, Dong-Ping & Li, Dong & Xie, Ying, 2022. "Service fairness and value of customer information for the stochastic container relocation problem under flexible service policy," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).
    11. Song, Shuang & Govindan, Kannan & Xu, Lei & Du, Peng & Qiao, Xiaojiao, 2017. "Capacity and production planning with carbon emission constraints," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 97(C), pages 132-150.
    12. Lu Zhen & Shuaian Wang & Kai Wang, 2016. "Terminal allocation problem in a transshipment hub considering bunker consumption," Naval Research Logistics (NRL), John Wiley & Sons, vol. 63(7), pages 529-548, October.
    13. Heilig, Leonard & Lalla-Ruiz, Eduardo & Voß, Stefan, 2017. "Multi-objective inter-terminal truck routing," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 106(C), pages 178-202.
    14. Hongming Li & Xintao Li, 2022. "A Branch-and-Bound Algorithm for the Bi-Objective Quay Crane Scheduling Problem Based on Efficiency and Energy," Mathematics, MDPI, vol. 10(24), pages 1-20, December.
    15. Dhingra, Vibhuti & Kumawat, Govind Lal & Roy, Debjit & Koster, René de, 2018. "Solving semi-open queuing networks with time-varying arrivals: An application in container terminal landside operations," European Journal of Operational Research, Elsevier, vol. 267(3), pages 855-876.
    16. Iris, Çağatay & Lam, Jasmine Siu Lee, 2019. "A review of energy efficiency in ports: Operational strategies, technologies and energy management systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 170-182.
    17. Torkjazi, Mohammad & Huynh, Nathan & Shiri, Samaneh, 2018. "Truck appointment systems considering impact to drayage truck tours," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 116(C), pages 208-228.
    18. Jacobsson, Stefan & Arnäs, Per Olof & Stefansson, Gunnar, 2018. "Differentiation of access management services at seaport terminals: Facilitating potential improvements for road hauliers," Journal of Transport Geography, Elsevier, vol. 70(C), pages 256-264.
    19. Wang, Tingsong & Cheng, Peiyue & Zhen, Lu, 2023. "Green development of the maritime industry: Overview, perspectives, and future research opportunities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    20. Li, Dongjun & Dong, Jing-Xin & Song, Dong-Ping & Hicks, Christian & Singh, Surya Prakash, 2020. "Optimal contract design for the exchange of tradable truck permits at multiterminal ports," International Journal of Production Economics, Elsevier, vol. 230(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:operea:v:17:y:2017:i:3:d:10.1007_s12351-016-0242-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.