IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v69y2018icp36-44.html
   My bibliography  Save this article

Bikeability – Urban structures supporting cycling. Effects of local, urban and regional scale urban form factors on cycling from home and workplace locations in Denmark

Author

Listed:
  • Nielsen, Thomas Alexander Sick
  • Skov-Petersen, Hans

Abstract

This study applies micro-level transport survey data to assess the significance of Bikeability variables on the probability of cycling in trips to or from residential and workplace locations. The data and analysis were prepared to include measures at different spatial scales, including measures of density/accessibility and infrastructure provision for network distances from up to 1 km to up to 5 km from the origin of a trip, as well as the regional position of the city. The probability of cycling is affected by urban structure variables at the local, urban and regional scale. The local scale, which includes the positive effects from population density and cycling infrastructures, is the most important in influencing cycling, but there are substantial additional contributions from access to retail and train stations within a range of 3–4 km, as well as from the relative size of the city within the region. The effect of the regional scale most likely reflects the reliance upon motorized modes to connect to distant important nodes. Factors at the local, urban and regional scales may pull cycling in opposite directions and thus all need to be considered to adequately assess the possibilities for promoting cycling in an urban area or neighbourhood.

Suggested Citation

  • Nielsen, Thomas Alexander Sick & Skov-Petersen, Hans, 2018. "Bikeability – Urban structures supporting cycling. Effects of local, urban and regional scale urban form factors on cycling from home and workplace locations in Denmark," Journal of Transport Geography, Elsevier, vol. 69(C), pages 36-44.
  • Handle: RePEc:eee:jotrge:v:69:y:2018:i:c:p:36-44
    DOI: 10.1016/j.jtrangeo.2018.04.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0966692317306385
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2018.04.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kevin J Krizek & Susan L Handy & Ann Forsyth, 2009. "Explaining Changes in Walking and Bicycling Behavior: Challenges for Transportation Research," Environment and Planning B, , vol. 36(4), pages 725-740, August.
    2. Hansen, Karsten Bruun & Nielsen, Thomas Alexander Sick, 2014. "Exploring characteristics and motives of long distance commuter cyclists," Transport Policy, Elsevier, vol. 35(C), pages 57-63.
    3. Meghan Winters & Michael Brauer & Eleanor M Setton & Kay Teschke, 2013. "Mapping Bikeability: A Spatial Tool to Support Sustainable Travel," Environment and Planning B, , vol. 40(5), pages 865-883, October.
    4. Pikora, Terri & Giles-Corti, Billie & Bull, Fiona & Jamrozik, Konrad & Donovan, Rob, 2003. "Developing a framework for assessment of the environmental determinants of walking and cycling," Social Science & Medicine, Elsevier, vol. 56(8), pages 1693-1703, April.
    5. Ralph Buehler & Jennifer Dill, 2016. "Bikeway Networks: A Review of Effects on Cycling," Transport Reviews, Taylor & Francis Journals, vol. 36(1), pages 9-27, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martin, Adam & Morciano, Marcello & Suhrcke, Marc, 2021. "Determinants of bicycle commuting and the effect of bicycle infrastructure investment in London: Evidence from UK census microdata," Economics & Human Biology, Elsevier, vol. 41(C).
    2. Maria Nogal & Pilar Jiménez, 2020. "Attractiveness of Bike-Sharing Stations from a Multi-Modal Perspective: The Role of Objective and Subjective Features," Sustainability, MDPI, vol. 12(21), pages 1-26, October.
    3. HaeLi Kang & Dong Ha Kim & Seunghyun Yoo, 2019. "Attributes of Perceived Bikeability in a Compact Urban Neighborhood Based on Qualitative Multi-Methods," IJERPH, MDPI, vol. 16(19), pages 1-16, October.
    4. Beecham, Roger & Tait, Caroline & Lovelace, Robin & Yang, Yuanxuan, 2022. "Connected bikeability in London: which localities are better connected by bike and does this matter?," OSF Preprints gbfz8, Center for Open Science.
    5. Mogens Fosgerau & Miroslawa Lukawska & Mads Paulsen & Thomas Kj{ae}r Rasmussen, 2022. "Bikeability and the induced demand for cycling," Papers 2210.02504, arXiv.org, revised Dec 2022.
    6. Gan, Zuoxian & Yang, Min & Zeng, Qingcheng & Timmermans, Harry J.P., 2021. "Associations between built environment, perceived walkability/bikeability and metro transfer patterns," Transportation Research Part A: Policy and Practice, Elsevier, vol. 153(C), pages 171-187.
    7. Rodriguez-Valencia, Alvaro & Rosas-Satizábal, Daniel & Gordo, Daniel & Ochoa, Andrés, 2019. "Impact of household proximity to the cycling network on bicycle ridership: The case of Bogotá," Journal of Transport Geography, Elsevier, vol. 79(C), pages 1-1.
    8. Samuel Nello-Deakin & Marco te Brömmelstroet, 2021. "Scaling up cycling or replacing driving? Triggers and trajectories of bike–train uptake in the Randstad area," Transportation, Springer, vol. 48(6), pages 3239-3267, December.
    9. Buregeya, Jean Marie & Loignon, Christine & Brousselle, Astrid, 2020. "Contribution analysis to analyze the effects of the health impact assessment at the local level: A case of urban revitalization," Evaluation and Program Planning, Elsevier, vol. 79(C).
    10. Jonas Schmid-Querg & Andreas Keler & Georgios Grigoropoulos, 2021. "The Munich Bikeability Index: A Practical Approach for Measuring Urban Bikeability," Sustainability, MDPI, vol. 13(1), pages 1-14, January.
    11. Hallberg, Martin & Rasmussen, Thomas Kjær & Rich, Jeppe, 2021. "Modelling the impact of cycle superhighways and electric bicycles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 149(C), pages 397-418.
    12. Sonja Haustein & Maarten Kroesen & Ismir Mulalic, 2020. "Cycling culture and socialisation: modelling the effect of immigrant origin on cycling in Denmark and the Netherlands," Transportation, Springer, vol. 47(4), pages 1689-1709, August.
    13. Jacek Oskarbski & Krystian Birr & Karol Żarski, 2021. "Bicycle Traffic Model for Sustainable Urban Mobility Planning," Energies, MDPI, vol. 14(18), pages 1-36, September.
    14. Federica Biassoni & Chiara Lo Carmine & Paolo Perego & Martina Gnerre, 2023. "Choosing the Bicycle as a Mode of Transportation, the Influence of Infrastructure Perception, Travel Satisfaction and Pro-Environmental Attitude, the Case of Milan," Sustainability, MDPI, vol. 15(16), pages 1-14, August.
    15. Elise Desjardins & Christopher D. Higgins & Darren M. Scott & Emma Apatu & Antonio Páez, 2022. "Correlates of bicycling trip flows in Hamilton, Ontario: fastest, quietest, or balanced routes?," Transportation, Springer, vol. 49(3), pages 867-895, June.
    16. Xueying Wu & Yi Lu & Yaoyu Lin & Yiyang Yang, 2019. "Measuring the Destination Accessibility of Cycling Transfer Trips in Metro Station Areas: A Big Data Approach," IJERPH, MDPI, vol. 16(15), pages 1-16, July.
    17. Willberg, Elias S & Tenkanen, Henrikki & Poom, Age & Salonen, Maria & Toivonen, Tuuli, 2021. "Comparing spatial data sources for cycling studies – a review," SocArXiv ruy3j, Center for Open Science.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bongiorno, Christian & Santucci, Daniele & Kon, Fabio & Santi, Paolo & Ratti, Carlo, 2019. "Comparing bicycling and pedestrian mobility: Patterns of non-motorized human mobility in Greater Boston," Journal of Transport Geography, Elsevier, vol. 80(C).
    2. Lin, Jen-Jia & Wei, Yi-Hsuan, 2018. "Assessing area-wide bikeability: A grey analytic network process," Transportation Research Part A: Policy and Practice, Elsevier, vol. 113(C), pages 381-396.
    3. Faghih Imani, Ahmadreza & Miller, Eric J. & Saxe, Shoshanna, 2019. "Cycle accessibility and level of traffic stress: A case study of Toronto," Journal of Transport Geography, Elsevier, vol. 80(C).
    4. Vedel, Suzanne Elizabeth & Jacobsen, Jette Bredahl & Skov-Petersen, Hans, 2017. "Bicyclists’ preferences for route characteristics and crowding in Copenhagen – A choice experiment study of commuters," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 53-64.
    5. Cooper, Crispin H.V., 2017. "Using spatial network analysis to model pedal cycle flows, risk and mode choice," Journal of Transport Geography, Elsevier, vol. 58(C), pages 157-165.
    6. Zhao, Chunli & Carstensen, Trine Agervig & Nielsen, Thomas Alexander Sick & Olafsson, Anton Stahl, 2018. "Bicycle-friendly infrastructure planning in Beijing and Copenhagen - between adapting design solutions and learning local planning cultures," Journal of Transport Geography, Elsevier, vol. 68(C), pages 149-159.
    7. Rodriguez-Valencia, Alvaro & Rosas-Satizábal, Daniel & Gordo, Daniel & Ochoa, Andrés, 2019. "Impact of household proximity to the cycling network on bicycle ridership: The case of Bogotá," Journal of Transport Geography, Elsevier, vol. 79(C), pages 1-1.
    8. Alvaro Rodriguez-Valencia & Jose Agustin Vallejo-Borda & German A. Barrero & Hernan Alberto Ortiz-Ramirez, 2022. "Towards an enriched framework of service evaluation for pedestrian and bicyclist infrastructure: acknowledging the power of users’ perceptions," Transportation, Springer, vol. 49(3), pages 791-814, June.
    9. Downward, Paul & Rasciute, Simona, 2015. "Assessing the impact of the National Cycle Network and physical activity lifestyle on cycling behaviour in England," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 425-437.
    10. Vandenbulcke, Grégory & Dujardin, Claire & Thomas, Isabelle & Geus, Bas de & Degraeuwe, Bart & Meeusen, Romain & Panis, Luc Int, 2011. "Cycle commuting in Belgium: Spatial determinants and 're-cycling' strategies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(2), pages 118-137, February.
    11. Anowar, Sabreena & Eluru, Naveen & Hatzopoulou, Marianne, 2017. "Quantifying the value of a clean ride: How far would you bicycle to avoid exposure to traffic-related air pollution?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 105(C), pages 66-78.
    12. Zhu, Siying & Zhu, Feng, 2019. "Cycling comfort evaluation with instrumented probe bicycle," Transportation Research Part A: Policy and Practice, Elsevier, vol. 129(C), pages 217-231.
    13. Ospina, Juan P. & Duque, Juan C. & Botero-Fernández, Verónica & Montoya, Alejandro, 2022. "The maximal covering bicycle network design problem," Transportation Research Part A: Policy and Practice, Elsevier, vol. 159(C), pages 222-236.
    14. Md. Kamruzzaman & Simon Washington & Douglas Baker & Wendy Brown & Billie Giles-Corti & Gavin Turrell, 2016. "Built environment impacts on walking for transport in Brisbane, Australia," Transportation, Springer, vol. 43(1), pages 53-77, January.
    15. Rybarczyk, Greg & Gallagher, Laura, 2014. "Measuring the potential for bicycling and walking at a metropolitan commuter university," Journal of Transport Geography, Elsevier, vol. 39(C), pages 1-10.
    16. Hong, Jinhyun & Philip McArthur, David & Stewart, Joanna L., 2020. "Can providing safe cycling infrastructure encourage people to cycle more when it rains? The use of crowdsourced cycling data (Strava)," Transportation Research Part A: Policy and Practice, Elsevier, vol. 133(C), pages 109-121.
    17. Bentley, Rebecca & Jolley, Damien & Kavanagh, Anne Marie, 2010. "Local environments as determinants of walking in Melbourne, Australia," Social Science & Medicine, Elsevier, vol. 70(11), pages 1806-1815, June.
    18. Elise Desjardins & Christopher D. Higgins & Darren M. Scott & Emma Apatu & Antonio Páez, 2022. "Correlates of bicycling trip flows in Hamilton, Ontario: fastest, quietest, or balanced routes?," Transportation, Springer, vol. 49(3), pages 867-895, June.
    19. Seyed Mehdi Moeini, 2012. "Attitudes to Urban Walking in Tehran," Environment and Planning B, , vol. 39(2), pages 344-359, April.
    20. Ali Al-Ramini & Mohammad A Takallou & Daniel P Piatkowski & Fadi Alsaleem, 2022. "Quantifying changes in bicycle volumes using crowdsourced data," Environment and Planning B, , vol. 49(6), pages 1612-1630, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:69:y:2018:i:c:p:36-44. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.