IDEAS home Printed from https://ideas.repec.org/a/kap/transp/v49y2022i3d10.1007_s11116-021-10197-1.html
   My bibliography  Save this article

Correlates of bicycling trip flows in Hamilton, Ontario: fastest, quietest, or balanced routes?

Author

Listed:
  • Elise Desjardins

    (McMaster University)

  • Christopher D. Higgins

    (University of Toronto Scarborough)

  • Darren M. Scott

    (McMaster University)

  • Emma Apatu

    (McMaster University)

  • Antonio Páez

    (McMaster University)

Abstract

Bicycling is an increasingly popular mode of travel in Canadian urban areas, like the Greater Toronto and Hamilton Area (GTHA). While trip origins and destinations can be inferred from travel surveys, data on route choice is often not collected which makes it challenging to capture the attributes of routes travelled by people who cycle. With new algorithms for cycle routing it is now possible to infer routes. Using bicycle trip records from the most recent regional travel survey, a spatial interaction model is developed to investigate the built environment correlates of bicycling flows in Hamilton, Ontario, a mid-sized city part of the GTHA. A feature of the analysis is the use of CycleStreets to compare the distance and time according to different routes inferred between trip zones of origin and destination. In addition, network autocorrelation is accounted for in the estimated models. The most parsimonious model suggests that shortest-path quietest routes that minimize traffic best explain the pattern of bicycle trip flows in Hamilton. Commercial and office locations and points of interest at the zone of origin negatively correlate with the production of trips, while different land uses and the availability of jobs at the zone of destination are trip attractors. The use of a route planner offers a novel approach to modelling and understanding bicycling flows within a city. This may be useful for transportation planners to infer different types of routes that bicyclists may seek out and consider these in travel demand models.

Suggested Citation

  • Elise Desjardins & Christopher D. Higgins & Darren M. Scott & Emma Apatu & Antonio Páez, 2022. "Correlates of bicycling trip flows in Hamilton, Ontario: fastest, quietest, or balanced routes?," Transportation, Springer, vol. 49(3), pages 867-895, June.
  • Handle: RePEc:kap:transp:v:49:y:2022:i:3:d:10.1007_s11116-021-10197-1
    DOI: 10.1007/s11116-021-10197-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11116-021-10197-1
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11116-021-10197-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Moniruzzaman, Md & Páez, Antonio, 2016. "An investigation of the attributes of walkable environments from the perspective of seniors in Montreal," Journal of Transport Geography, Elsevier, vol. 51(C), pages 85-96.
    2. Rachel Aldred & Bridget Elliott & James Woodcock & Anna Goodman, 2017. "Cycling provision separated from motor traffic: a systematic review exploring whether stated preferences vary by gender and age," Transport Reviews, Taylor & Francis Journals, vol. 37(1), pages 29-55, January.
    3. Yongwan Chun, 2008. "Modeling network autocorrelation within migration flows by eigenvector spatial filtering," Journal of Geographical Systems, Springer, vol. 10(4), pages 317-344, December.
    4. Lu, Wei & Scott, Darren M. & Dalumpines, Ron, 2018. "Understanding bike share cyclist route choice using GPS data: Comparing dominant routes and shortest paths," Journal of Transport Geography, Elsevier, vol. 71(C), pages 172-181.
    5. Pucher, John & Buehler, Ralph, 2006. "Why Canadians cycle more than Americans: A comparative analysis of bicycling trends and policies," Transport Policy, Elsevier, vol. 13(3), pages 265-279, May.
    6. Assunçao-Denis, Marie-Ève & Tomalty, Ray, 2019. "Increasing cycling for transportation in Canadian communities: Understanding what works," Transportation Research Part A: Policy and Practice, Elsevier, vol. 123(C), pages 288-304.
    7. Rodolfo Metulini & Roberto Patuelli & Daniel A. Griffith, 2018. "A Spatial-Filtering Zero-Inflated Approach to the Estimation of the Gravity Model of Trade," Econometrics, MDPI, vol. 6(1), pages 1-15, February.
    8. Lukas Adam & Tim Jones & Marco Brömmelstroet, 2020. "Planning for cycling in the dispersed city: establishing a hierarchy of effectiveness of municipal cycling policies," Transportation, Springer, vol. 47(2), pages 503-527, April.
    9. Páez, Antonio & Whalen, Kate, 2010. "Enjoyment of commute: A comparison of different transportation modes," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(7), pages 537-549, August.
    10. Ralph Buehler & John Pucher, 2012. "Cycling to work in 90 large American cities: new evidence on the role of bike paths and lanes," Transportation, Springer, vol. 39(2), pages 409-432, March.
    11. Scott, Darren M. & Lu, Wei & Brown, Matthew J., 2021. "Route choice of bike share users: Leveraging GPS data to derive choice sets," Journal of Transport Geography, Elsevier, vol. 90(C).
    12. Broach, Joseph & Dill, Jennifer & Gliebe, John, 2012. "Where do cyclists ride? A route choice model developed with revealed preference GPS data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(10), pages 1730-1740.
    13. Robin Lovelace, 2021. "Open source tools for geographic analysis in transport planning," Journal of Geographical Systems, Springer, vol. 23(4), pages 547-578, October.
    14. Sarjala, Satu, 2019. "Built environment determinants of pedestrians’ and bicyclists’ route choices on commute trips: Applying a new grid-based method for measuring the built environment along the route," Journal of Transport Geography, Elsevier, vol. 78(C), pages 56-69.
    15. McArthur, David Philip & Hong, Jinhyun, 2019. "Visualising where commuting cyclists travel using crowdsourced data," Journal of Transport Geography, Elsevier, vol. 74(C), pages 233-241.
    16. George Liu & Samuel Nello‐Deakin & Marco te Brömmelstroet & Yuki Yamamoto, 2020. "What Makes a Good Cargo Bike Route? Perspectives from Users and Planners," American Journal of Economics and Sociology, Wiley Blackwell, vol. 79(3), pages 941-965, May.
    17. Susan Handy & Bert van Wee & Maarten Kroesen, 2014. "Promoting Cycling for Transport: Research Needs and Challenges," Transport Reviews, Taylor & Francis Journals, vol. 34(1), pages 4-24, January.
    18. Daniel A. Griffith & Manfred M. Fischer, 2016. "Constrained Variants of the Gravity Model and Spatial Dependence: Model Specification and Estimation Issues," Advances in Spatial Science, in: Roberto Patuelli & Giuseppe Arbia (ed.), Spatial Econometric Interaction Modelling, chapter 0, pages 37-66, Springer.
    19. Nielsen, Thomas Alexander Sick & Skov-Petersen, Hans, 2018. "Bikeability – Urban structures supporting cycling. Effects of local, urban and regional scale urban form factors on cycling from home and workplace locations in Denmark," Journal of Transport Geography, Elsevier, vol. 69(C), pages 36-44.
    20. Pritchard, Ray & Bucher, Dominik & Frøyen, Yngve, 2019. "Does new bicycle infrastructure result in new or rerouted bicyclists? A longitudinal GPS study in Oslo," Journal of Transport Geography, Elsevier, vol. 77(C), pages 113-125.
    21. Wafic El-Assi & Mohamed Salah Mahmoud & Khandker Nurul Habib, 2017. "Effects of built environment and weather on bike sharing demand: a station level analysis of commercial bike sharing in Toronto," Transportation, Springer, vol. 44(3), pages 589-613, May.
    22. Ralph Buehler & Jennifer Dill, 2016. "Bikeway Networks: A Review of Effects on Cycling," Transport Reviews, Taylor & Francis Journals, vol. 36(1), pages 9-27, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cubells, Jerònia & Miralles-Guasch, Carme & Marquet, Oriol, 2023. "E-scooter and bike-share route choice and detours: Modelling the influence of built environment and sociodemographic factors," Journal of Transport Geography, Elsevier, vol. 111(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cubells, Jerònia & Miralles-Guasch, Carme & Marquet, Oriol, 2023. "E-scooter and bike-share route choice and detours: Modelling the influence of built environment and sociodemographic factors," Journal of Transport Geography, Elsevier, vol. 111(C).
    2. Jacek Oskarbski & Krystian Birr & Karol Żarski, 2021. "Bicycle Traffic Model for Sustainable Urban Mobility Planning," Energies, MDPI, vol. 14(18), pages 1-36, September.
    3. Hong, Jinhyun & Philip McArthur, David & Stewart, Joanna L., 2020. "Can providing safe cycling infrastructure encourage people to cycle more when it rains? The use of crowdsourced cycling data (Strava)," Transportation Research Part A: Policy and Practice, Elsevier, vol. 133(C), pages 109-121.
    4. Ji, Shujuan & Wang, Xin & Lyu, Tao & Liu, Xiaojie & Wang, Yuanqing & Heinen, Eva & Sun, Zhenwei, 2022. "Understanding cycling distance according to the prediction of the XGBoost and the interpretation of SHAP: A non-linear and interaction effect analysis," Journal of Transport Geography, Elsevier, vol. 103(C).
    5. Tineke de Jong & Lars Böcker & Christian Weber, 2023. "Road infrastructures, spatial surroundings, and the demand and route choices for cycling: Evidence from a GPS-based mode detection study from Oslo, Norway," Environment and Planning B, , vol. 50(8), pages 2133-2150, October.
    6. Frank, Lawrence D. & Hong, Andy & Ngo, Victor Douglas, 2021. "Build it and they will cycle: Causal evidence from the downtown Vancouver Comox Greenway," Transport Policy, Elsevier, vol. 105(C), pages 1-11.
    7. Oshan, Taylor M., 2022. "Spatial Interaction Modeling," OSF Preprints m3ah8, Center for Open Science.
    8. Ali Al-Ramini & Mohammad A Takallou & Daniel P Piatkowski & Fadi Alsaleem, 2022. "Quantifying changes in bicycle volumes using crowdsourced data," Environment and Planning B, , vol. 49(6), pages 1612-1630, July.
    9. Kevin B. Caldwell & Robert H. W. Boyer, 2019. "Bicycle commuting in an automobile-dominated city: how individuals become and remain bike commuters in Charlotte, North Carolina," Transportation, Springer, vol. 46(5), pages 1785-1806, October.
    10. Oshan, Taylor M., 2020. "The spatial structure debate in spatial interaction modeling: 50 years on," OSF Preprints 42vxn, Center for Open Science.
    11. Liu, Haoxiang & Szeto, W.Y. & Long, Jiancheng, 2019. "Bike network design problem with a path-size logit-based equilibrium constraint: Formulation, global optimization, and matheuristic," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 127(C), pages 284-307.
    12. Umer Mansoor & Mohammad Tamim Kashifi & Fazal Rehman Safi & Syed Masiur Rahman, 2022. "A review of factors and benefits of non-motorized transport: a way forward for developing countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 1560-1582, February.
    13. Ralph Buehler & Jennifer Dill, 2016. "Bikeway Networks: A Review of Effects on Cycling," Transport Reviews, Taylor & Francis Journals, vol. 36(1), pages 9-27, January.
    14. Faghih Imani, Ahmadreza & Miller, Eric J. & Saxe, Shoshanna, 2019. "Cycle accessibility and level of traffic stress: A case study of Toronto," Journal of Transport Geography, Elsevier, vol. 80(C).
    15. Frondel, Manuel & Vance, Colin, 2017. "Cycling on the extensive and intensive margin: The role of paths and prices," Transportation Research Part A: Policy and Practice, Elsevier, vol. 104(C), pages 21-31.
    16. Francisco Sergio Campos-Sánchez & Luis Miguel Valenzuela-Montes & Francisco Javier Abarca-Álvarez, 2019. "Evidence of Green Areas, Cycle Infrastructure and Attractive Destinations Working Together in Development on Urban Cycling," Sustainability, MDPI, vol. 11(17), pages 1-17, August.
    17. Scott, Darren M. & Lu, Wei & Brown, Matthew J., 2021. "Route choice of bike share users: Leveraging GPS data to derive choice sets," Journal of Transport Geography, Elsevier, vol. 90(C).
    18. Xueying Wu & Yi Lu & Yaoyu Lin & Yiyang Yang, 2019. "Measuring the Destination Accessibility of Cycling Transfer Trips in Metro Station Areas: A Big Data Approach," IJERPH, MDPI, vol. 16(15), pages 1-16, July.
    19. Martin, Adam & Morciano, Marcello & Suhrcke, Marc, 2021. "Determinants of bicycle commuting and the effect of bicycle infrastructure investment in London: Evidence from UK census microdata," Economics & Human Biology, Elsevier, vol. 41(C).
    20. Michael Hardinghaus & Simon Nieland & Marius Lehne & Jan Weschke, 2021. "More than Bike Lanes—A Multifactorial Index of Urban Bikeability," Sustainability, MDPI, vol. 13(21), pages 1-17, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:transp:v:49:y:2022:i:3:d:10.1007_s11116-021-10197-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.