IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v91y2020ics0305048318305887.html
   My bibliography  Save this article

Intra-Organizational and inter-organizational resource allocation in two-stage network systems

Author

Listed:
  • Ang, Sheng
  • Liu, Pei
  • Yang, Feng

Abstract

There are organizational systems, such as bank branches and two-stage supply chains, which are composed of multiple parallel two-stage structures. Resource allocation in these systems is to maximize the benefit of the overall organization from a global viewpoint. In this study, we consider two types of systems at an organizational level: a centralized organizational system treating the whole two-stage production process as a basic unit, and a decentralized organizational system including two sub-organizations (groups) treating one of the two-stage production processes as a basic unit. We propose intra-organizational and inter-organizational resource allocation plans for two different organizational systems, respectively. Specially, two modes of free intermediate resource allocation (Free IRA) and fixed intermediate resource allocation (Fixed IRA) are discussed for the decentralized organizational system. The proposed allocation plans are based on two-stage data envelopment analysis models with bi-level formulations, in which the upper-level model is to maximize the entire organizational effectiveness (total outputs minus total inputs) by determining the optimized input resources and output targets while the lower-level model is concerned with efficiency constraints of all decision-making units simultaneously. The developed methods are illustrated by an application to a real-world problem with 17 city bank branches.

Suggested Citation

  • Ang, Sheng & Liu, Pei & Yang, Feng, 2020. "Intra-Organizational and inter-organizational resource allocation in two-stage network systems," Omega, Elsevier, vol. 91(C).
  • Handle: RePEc:eee:jomega:v:91:y:2020:i:c:s0305048318305887
    DOI: 10.1016/j.omega.2018.11.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305048318305887
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2018.11.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Jie & Zhu, Qingyuan & Ji, Xiang & Chu, Junfei & Liang, Liang, 2016. "Two-stage network processes with shared resources and resources recovered from undesirable outputs," European Journal of Operational Research, Elsevier, vol. 251(1), pages 182-197.
    2. Karlaftis, Matthew G., 2004. "A DEA approach for evaluating the efficiency and effectiveness of urban transit systems," European Journal of Operational Research, Elsevier, vol. 152(2), pages 354-364, January.
    3. Qingxian An & Fanyong Meng & Sheng Ang & Xiaohong Chen, 2018. "A new approach for fair efficiency decomposition in two-stage structure system," Operational Research, Springer, vol. 18(1), pages 257-272, April.
    4. Chen, Ci & Yan, Hong, 2011. "Network DEA model for supply chain performance evaluation," European Journal of Operational Research, Elsevier, vol. 213(1), pages 147-155, August.
    5. Feng Yang & Dexiang Wu & Liang Liang & Gongbing Bi & Desheng Wu, 2011. "Supply chain DEA: production possibility set and performance evaluation model," Annals of Operations Research, Springer, vol. 185(1), pages 195-211, May.
    6. Lei Fang & C-Q Zhang, 2008. "Resource allocation based on the DEA model," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(8), pages 1136-1141, August.
    7. Tone, Kaoru & Tsutsui, Miki, 2009. "Network DEA: A slacks-based measure approach," European Journal of Operational Research, Elsevier, vol. 197(1), pages 243-252, August.
    8. Du, Juan & Liang, Liang & Chen, Yao & Bi, Gong-bing, 2010. "DEA-based production planning," Omega, Elsevier, vol. 38(1-2), pages 105-112, February.
    9. Yu, Ming-Miin & Chern, Ching-Chin & Hsiao, Bo, 2013. "Human resource rightsizing using centralized data envelopment analysis: Evidence from Taiwan's Airports," Omega, Elsevier, vol. 41(1), pages 119-130.
    10. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    11. Kao, Chiang & Hwang, Shiuh-Nan, 2008. "Efficiency decomposition in two-stage data envelopment analysis: An application to non-life insurance companies in Taiwan," European Journal of Operational Research, Elsevier, vol. 185(1), pages 418-429, February.
    12. Yao Chen & Wade D. Cook & Chiang Kao & Joe Zhu, 2014. "Network DEA Pitfalls: Divisional Efficiency and Frontier Projection," International Series in Operations Research & Management Science, in: Wade D. Cook & Joe Zhu (ed.), Data Envelopment Analysis, edition 127, chapter 0, pages 31-54, Springer.
    13. Asmild, Mette & Paradi, Joseph C. & Pastor, Jesus T., 2009. "Centralized resource allocation BCC models," Omega, Elsevier, vol. 37(1), pages 40-49, February.
    14. An, Qingxian & Yan, Hong & Wu, Jie & Liang, Liang, 2016. "Internal resource waste and centralization degree in two-stage systems: An efficiency analysis," Omega, Elsevier, vol. 61(C), pages 89-99.
    15. Paradi, Joseph C. & Zhu, Haiyan, 2013. "A survey on bank branch efficiency and performance research with data envelopment analysis," Omega, Elsevier, vol. 41(1), pages 61-79.
    16. Sebastián Lozano & Gabriel Villa, 2004. "Centralized Resource Allocation Using Data Envelopment Analysis," Journal of Productivity Analysis, Springer, vol. 22(1), pages 143-161, July.
    17. Liang Liang & Feng Yang & Wade Cook & Joe Zhu, 2006. "DEA models for supply chain efficiency evaluation," Annals of Operations Research, Springer, vol. 145(1), pages 35-49, July.
    18. Lawrence M. Seiford & Joe Zhu, 1999. "Profitability and Marketability of the Top 55 U.S. Commercial Banks," Management Science, INFORMS, vol. 45(9), pages 1270-1288, September.
    19. Zha, Yong & Liang, Nannan & Wu, Maoguo & Bian, Yiwen, 2016. "Efficiency evaluation of banks in China: A dynamic two-stage slacks-based measure approach," Omega, Elsevier, vol. 60(C), pages 60-72.
    20. Pekka Korhonen & Mikko Syrjänen, 2004. "Resource Allocation Based on Efficiency Analysis," Management Science, INFORMS, vol. 50(8), pages 1134-1144, August.
    21. Yu, Ming-Miin & Chen, Li-Hsueh, 2016. "Centralized resource allocation with emission resistance in a two-stage production system: Evidence from a Taiwan’s container shipping company," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 650-671.
    22. Ang, Sheng & Chen, Chien-Ming, 2016. "Pitfalls of decomposition weights in the additive multi-stage DEA model," Omega, Elsevier, vol. 58(C), pages 139-153.
    23. Kao, Chiang, 2018. "A classification of slacks-based efficiency measures in network data envelopment analysis with an analysis of the properties possessed," European Journal of Operational Research, Elsevier, vol. 270(3), pages 1109-1121.
    24. Wang, Ke & Huang, Wei & Wu, Jie & Liu, Ying-Nan, 2014. "Efficiency measures of the Chinese commercial banking system using an additive two-stage DEA," Omega, Elsevier, vol. 44(C), pages 5-20.
    25. Afsharian, Mohsen & Ahn, Heinz & Thanassoulis, Emmanuel, 2017. "A DEA-based incentives system for centrally managed multi-unit organisations," European Journal of Operational Research, Elsevier, vol. 259(2), pages 587-598.
    26. Hirofumi Fukuyama & William L. Weber, 2012. "Estimating Two-Stage Network Technology Inefficiency: An Application to Cooperative Shinkin Banks in Japan," International Journal of Operations Research and Information Systems (IJORIS), IGI Global, vol. 3(2), pages 1-23, April.
    27. Fang, Lei, 2013. "A generalized DEA model for centralized resource allocation," European Journal of Operational Research, Elsevier, vol. 228(2), pages 405-412.
    28. Chen, Yao & Cook, Wade D. & Zhu, Joe, 2010. "Deriving the DEA frontier for two-stage processes," European Journal of Operational Research, Elsevier, vol. 202(1), pages 138-142, April.
    29. Beasley, J. E., 2003. "Allocating fixed costs and resources via data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 147(1), pages 198-216, May.
    30. Chen, Yao & Cook, Wade D. & Li, Ning & Zhu, Joe, 2009. "Additive efficiency decomposition in two-stage DEA," European Journal of Operational Research, Elsevier, vol. 196(3), pages 1170-1176, August.
    31. Schaffnit, Claire & Rosen, Dan & Paradi, Joseph C., 1997. "Best practice analysis of bank branches: An application of DEA in a large Canadian bank," European Journal of Operational Research, Elsevier, vol. 98(2), pages 269-289, April.
    32. Chen, Yao & Du, Juan & David Sherman, H. & Zhu, Joe, 2010. "DEA model with shared resources and efficiency decomposition," European Journal of Operational Research, Elsevier, vol. 207(1), pages 339-349, November.
    33. Zha, Yong & Liang, Liang, 2010. "Two-stage cooperation model with input freely distributed among the stages," European Journal of Operational Research, Elsevier, vol. 205(2), pages 332-338, September.
    34. Ben-Ayed, Omar & Boyce, David E. & Blair, Charles E., 1988. "A general bilevel linear programming formulation of the network design problem," Transportation Research Part B: Methodological, Elsevier, vol. 22(4), pages 311-318, August.
    35. Chen, Ya & Li, Yongjun & Liang, Liang & Salo, Ahti & Wu, Huaqing, 2016. "Frontier projection and efficiency decomposition in two-stage processes with slacks-based measures," European Journal of Operational Research, Elsevier, vol. 250(2), pages 543-554.
    36. Athanassopoulos, Antreas D., 1995. "Goal programming & data envelopment analysis (GoDEA) for target-based multi-level planning: Allocating central grants to the Greek local authorities," European Journal of Operational Research, Elsevier, vol. 87(3), pages 535-550, December.
    37. Sahoo, Biresh K. & Zhu, Joe & Tone, Kaoru & Klemen, Bernhard M., 2014. "Decomposing technical efficiency and scale elasticity in two-stage network DEA," European Journal of Operational Research, Elsevier, vol. 233(3), pages 584-594.
    38. Jie Wu & Qingxian An, 2012. "New Approaches For Resource Allocation Via Dea Models," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 11(01), pages 103-117.
    39. Varmaz, Armin & Varwig, Andreas & Poddig, Thorsten, 2013. "Centralized resource planning and Yardstick competition," Omega, Elsevier, vol. 41(1), pages 112-118.
    40. Liang Liang & Wade D. Cook & Joe Zhu, 2008. "DEA models for two‐stage processes: Game approach and efficiency decomposition," Naval Research Logistics (NRL), John Wiley & Sons, vol. 55(7), pages 643-653, October.
    41. Yu, Ming-Miin & Chen, Li-Hsueh & Hsiao, Bo, 2016. "A fixed cost allocation based on the two-stage network data envelopment approach," Journal of Business Research, Elsevier, vol. 69(5), pages 1817-1822.
    42. Yao Chen & Liang Liang & Feng Yang, 2006. "A DEA game model approach to supply chain efficiency," Annals of Operations Research, Springer, vol. 145(1), pages 5-13, July.
    43. Fethi, Meryem Duygun & Pasiouras, Fotios, 2010. "Assessing bank efficiency and performance with operational research and artificial intelligence techniques: A survey," European Journal of Operational Research, Elsevier, vol. 204(2), pages 189-198, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Menghan Chen & Sheng Ang & Lijing Jiang & Feng Yang, 2020. "Centralized resource allocation based on cross-evaluation considering organizational objective and individual preferences," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(2), pages 529-565, June.
    2. Cai, Xueyuan & Li, Jianbin & Lian, Zhaotong & Liu, Zhixin, 2022. "Fixed allocation of capacity for multiple retailers under demand competition," Omega, Elsevier, vol. 110(C).
    3. Gupta, Anshu & Pachar, Nomita & Jain, Akansha & Govindan, Kannan & Jha, P.C., 2023. "Resource reallocation strategies for sustainable efficiency improvement of retail chains," Journal of Retailing and Consumer Services, Elsevier, vol. 73(C).
    4. Yang, Jiawei & Li, Yuanyu & Fang, Lei, 2023. "Financing capacity planning with environmental considerations: A non-parametric analysis," Omega, Elsevier, vol. 118(C).
    5. Li, Yongjun & Liu, Jin & Ang, Sheng & Yang, Feng, 2021. "Performance evaluation of two-stage network structures with fixed-sum outputs: An application to the 2018winter Olympic Games," Omega, Elsevier, vol. 102(C).
    6. Chenpeng Feng & Rong Zhou & Jingjing Ding & Xiangze Xiao & Mingyue Pu, 2023. "A Method for Allocation of Carbon Emission Quotas to Provincial-Level Industries in China Based on DEA," Sustainability, MDPI, vol. 15(3), pages 1-21, February.
    7. Liang, Jinpeng & Zang, Guangzhi & Liu, Haitao & Zheng, Jianfeng & Gao, Ziyou, 2023. "Reducing passenger waiting time in oversaturated metro lines with passenger flow control policy," Omega, Elsevier, vol. 117(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tatiana Bencova & Andrea Bohacikova, 2022. "DEA in Performance Measurement of Two-Stage Processes: Comparative Overview of the Literature," Economic Studies journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 5, pages 111-129.
    2. Kao, Chiang, 2014. "Network data envelopment analysis: A review," European Journal of Operational Research, Elsevier, vol. 239(1), pages 1-16.
    3. Lim, Dong-Joon & Kim, Moon-Su, 2022. "Measuring dynamic efficiency with variable time lag effects," Omega, Elsevier, vol. 108(C).
    4. Fukuyama, Hirofumi & Matousek, Roman & Tzeremes, Nickolaos G., 2020. "A Nerlovian cost inefficiency two-stage DEA model for modeling banks’ production process: Evidence from the Turkish banking system," Omega, Elsevier, vol. 95(C).
    5. Andreas C. Georgiou & Konstantinos Kaparis & Eleni-Maria Vretta & Kyriakos Bitsis & George Paltayian, 2024. "A Bilevel DEA Model for Efficiency Evaluation and Target Setting with Stochastic Conditions," Mathematics, MDPI, vol. 12(4), pages 1-21, February.
    6. AGRELL, Per & HATAMI-MARBINI, Adel, 2011. "Frontier-based performance analysis models for supply chain management; state of the art and research directions," LIDAM Discussion Papers CORE 2011069, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    7. Li, Feng & Zhu, Qingyuan & Chen, Zhi, 2019. "Allocating a fixed cost across the decision making units with two-stage network structures," Omega, Elsevier, vol. 83(C), pages 139-154.
    8. Xiong, Xi & Yang, Guo-liang & Zhou, De-qun & Wang, Zi-long, 2022. "How to allocate multi-period research resources? Centralized resource allocation for public universities in China using a parallel DEA-based approach," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    9. Xiaohong Liu & Feng Yang & Jie Wu, 2020. "DEA considering technological heterogeneity and intermediate output target setting: the performance analysis of Chinese commercial banks," Annals of Operations Research, Springer, vol. 291(1), pages 605-626, August.
    10. Dan Li & Yanfeng Li & Yeming Gong & Jiawei Yang, 2021. "Estimation of bank performance from multiple perspectives: an alternative solution to the deposit dilemma," Journal of Productivity Analysis, Springer, vol. 56(2), pages 151-170, December.
    11. Chen, Ya & Li, Yongjun & Liang, Liang & Salo, Ahti & Wu, Huaqing, 2016. "Frontier projection and efficiency decomposition in two-stage processes with slacks-based measures," European Journal of Operational Research, Elsevier, vol. 250(2), pages 543-554.
    12. Lorenzo Castelli & Raffaele Pesenti & Walter Ukovich, 2010. "A classification of DEA models when the internal structure of the Decision Making Units is considered," Annals of Operations Research, Springer, vol. 173(1), pages 207-235, January.
    13. Yingying Shao & Gongbing Bi & Feng Yang & Qiong Xia, 2018. "Resource allocation for branch network system with considering heterogeneity based on DEA method," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(4), pages 1005-1025, December.
    14. Patrizii, Vincenzo, 2020. "On network two stages variable returns to scale Dea models," Omega, Elsevier, vol. 97(C).
    15. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min, 2016. "Research fronts in data envelopment analysis," Omega, Elsevier, vol. 58(C), pages 33-45.
    16. Tavakoli, Ibrahim M. & Mostafaee, Amin, 2019. "Free disposal hull efficiency scores of units with network structures," European Journal of Operational Research, Elsevier, vol. 277(3), pages 1027-1036.
    17. Li, Yongjun & Liu, Jin & Ang, Sheng & Yang, Feng, 2021. "Performance evaluation of two-stage network structures with fixed-sum outputs: An application to the 2018winter Olympic Games," Omega, Elsevier, vol. 102(C).
    18. Feng Li & Qingyuan Zhu & Liang Liang, 2019. "A new data envelopment analysis based approach for fixed cost allocation," Annals of Operations Research, Springer, vol. 274(1), pages 347-372, March.
    19. Despotis, Dimitris K. & Koronakos, Gregory & Sotiros, Dimitris, 2016. "The “weak-link” approach to network DEA for two-stage processes," European Journal of Operational Research, Elsevier, vol. 254(2), pages 481-492.
    20. Fang, Lei, 2015. "Centralized resource allocation based on efficiency analysis for step-by-step improvement paths," Omega, Elsevier, vol. 51(C), pages 24-28.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:91:y:2020:i:c:s0305048318305887. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.