Advanced Search
MyIDEAS: Login to save this article or follow this journal

Empirical likelihood inference for median regression models for censored survival data

Contents:

Author Info

  • Qin, Gengsheng
  • Tsao, Min
Registered author(s):

    Abstract

    Recent advances in median regression model have made it possible to use this model for analyzing a variety of censored survival data. For inference on the model parameter vector, there are now semiparametric procedures based on normal approximation that are valid without strong conditions on the error distribution. However, the accuracy of such procedures can be quite low when the censoring proportion is high. In this paper, we propose an alternative semiparametric procedure based on the empirical likelihood. We define the empirical likelihood ratio for the parameter vector and show that its limiting distribution is a weighted sum of chi-square distributions. Numerical results from a simulation study suggest that the empirical likelihood method is more accurate than the normal approximation based method of Ying et al. (J. Amer. Statist. Assoc. 90 (1995) 178).

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.sciencedirect.com/science/article/B6WK9-483SR2T-1/2/7dd7e0b453b6cbb84abe0ab2ac5fbe39
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal Journal of Multivariate Analysis.

    Volume (Year): 85 (2003)
    Issue (Month): 2 (May)
    Pages: 416-430

    as in new window
    Handle: RePEc:eee:jmvana:v:85:y:2003:i:2:p:416-430

    Contact details of provider:
    Web page: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description

    Order Information:
    Postal: http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
    Web: https://shop.elsevier.com/order?id=622892&ref=622892_01_ooc_1&version=01

    Related research

    Keywords: Empirical likelihood Censored data Median regression Normal approximation Quantile regression;

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Powell, James L., 1986. "Censored regression quantiles," Journal of Econometrics, Elsevier, vol. 32(1), pages 143-155, June.
    2. Gianfranco Adimari, 1997. "Empirical Likelihood Type Confidence Intervals Under Random Censorship," Annals of the Institute of Statistical Mathematics, Springer, vol. 49(3), pages 447-466, September.
    3. Lai, T. L. & Ying, Z. L. & Zheng, Z. K., 1995. "Asymptotic Normality of a Class of Adaptive Statistics with Applications to Synthetic Data Methods for Censored Regression," Journal of Multivariate Analysis, Elsevier, vol. 52(2), pages 259-279, February.
    4. Powell, James L., 1984. "Least absolute deviations estimation for the censored regression model," Journal of Econometrics, Elsevier, vol. 25(3), pages 303-325, July.
    5. Song Chen, 1993. "On the accuracy of empirical likelihood confidence regions for linear regression model," Annals of the Institute of Statistical Mathematics, Springer, vol. 45(4), pages 621-637, December.
    6. Lai, Tze Leung & Ying, Zhiliang, 1992. "Linear rank statistics in regression analysis with censored or truncated data," Journal of Multivariate Analysis, Elsevier, vol. 40(1), pages 13-45, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Zhong, Pingshou & Cui, Hengjian, 2010. "Empirical likelihood for median regression model with designed censoring variables," Journal of Multivariate Analysis, Elsevier, vol. 101(1), pages 240-251, January.
    2. Shim, Jooyong & Hwang, Changha, 2009. "Support vector censored quantile regression under random censoring," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 912-919, February.
    3. Tang, Linjun & Zhou, Zhangong & Wu, Changchun, 2012. "Weighted composite quantile estimation and variable selection method for censored regression model," Statistics & Probability Letters, Elsevier, vol. 82(3), pages 653-663.
    4. Tang, Cheng Yong & Leng, Chenlei, 2012. "An empirical likelihood approach to quantile regression with auxiliary information," Statistics & Probability Letters, Elsevier, vol. 82(1), pages 29-36.
    5. Han-Ying Liang & Jacobo Uña-Álvarez, 2011. "Asymptotic properties of conditional quantile estimator for censored dependent observations," Annals of the Institute of Statistical Mathematics, Springer, vol. 63(2), pages 267-289, April.
    6. Yichuan Zhao & Song Yang, 2008. "Empirical likelihood inference for censored median regression with weighted empirical hazard functions," Annals of the Institute of Statistical Mathematics, Springer, vol. 60(2), pages 441-457, June.
    7. César Sánchez-Sellero, 2009. "Comments on: A review on empirical likelihood methods for regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer, vol. 18(3), pages 458-460, November.
    8. Zhao, Yichuan & Chen, Feiming, 2008. "Empirical likelihood inference for censored median regression model via nonparametric kernel estimation," Journal of Multivariate Analysis, Elsevier, vol. 99(2), pages 215-231, February.
    9. Qin, Gengsheng & Zhao, Yichuan, 2007. "Empirical likelihood inference for the mean residual life under random censorship," Statistics & Probability Letters, Elsevier, vol. 77(5), pages 549-557, March.
    10. Xiaofeng Lv & Rui Li, 2013. "Smoothed empirical likelihood analysis of partially linear quantile regression models with missing response variables," AStA Advances in Statistical Analysis, Springer, vol. 97(4), pages 317-347, October.
    11. Bravo, Francesco, 2009. "Two-step generalised empirical likelihood inference for semiparametric models," Journal of Multivariate Analysis, Elsevier, vol. 100(7), pages 1412-1431, August.
    12. Lu, Wenbin & Liang, Yu, 2006. "Empirical likelihood inference for linear transformation models," Journal of Multivariate Analysis, Elsevier, vol. 97(7), pages 1586-1599, August.
    13. Ould-SaI¨d, Elias, 2006. "A strong uniform convergence rate of kernel conditional quantile estimator under random censorship," Statistics & Probability Letters, Elsevier, vol. 76(6), pages 579-586, March.
    14. Zhangong Zhou & Rong Jiang & Weimin Qian, 2013. "LAD variable selection for linear models with randomly censored data," Metrika, Springer, vol. 76(2), pages 287-300, February.
    15. Ming Zheng & Wen Yu, 2013. "Empirical likelihood method for multivariate Cox regression," Computational Statistics, Springer, vol. 28(3), pages 1241-1267, June.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:85:y:2003:i:2:p:416-430. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.