IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v174y2019ics0047259x18304378.html
   My bibliography  Save this article

Robust factor number specification for large-dimensional elliptical factor model

Author

Listed:
  • Yu, Long
  • He, Yong
  • Zhang, Xinsheng

Abstract

The accurate specification for the number of factors is critical to the validity of factor models and the topic almost occupies the central position in factor analysis. Plenty of estimators are available under the restrictive condition that the fourth moments of the factors and idiosyncratic errors are bounded. In this paper we propose efficient and robust estimators for the factor number via considering a more general static Elliptical Factor Model (EFM) framework. We innovatively propose to exploit the multivariate Kendall’s tau matrix, which captures the correlation structure of elliptical random vectors. Theoretical analysis shows that the proposed estimators are consistent without exerting any moment condition when both cross-sections N and time dimensions T go to infinity. Simulation study shows that the new estimators perform much better in heavy-tailed data setting while performing comparably with the state-of-the-art methods in the light-tailed Gaussian setting. At last, a real macroeconomic data example is given to illustrate its empirical advantages and usefulness.

Suggested Citation

  • Yu, Long & He, Yong & Zhang, Xinsheng, 2019. "Robust factor number specification for large-dimensional elliptical factor model," Journal of Multivariate Analysis, Elsevier, vol. 174(C).
  • Handle: RePEc:eee:jmvana:v:174:y:2019:i:c:s0047259x18304378
    DOI: 10.1016/j.jmva.2019.104543
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X18304378
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2019.104543?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    2. Michael W. McCracken & Serena Ng, 2016. "FRED-MD: A Monthly Database for Macroeconomic Research," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 574-589, October.
    3. Seung C. Ahn & Alex R. Horenstein, 2013. "Eigenvalue Ratio Test for the Number of Factors," Econometrica, Econometric Society, vol. 81(3), pages 1203-1227, May.
    4. Alexei Onatski, 2009. "Testing Hypotheses About the Number of Factors in Large Factor Models," Econometrica, Econometric Society, vol. 77(5), pages 1447-1479, September.
    5. Xia, Qiang & Liang, Rubing & Wu, Jianhong, 2017. "Transformed contribution ratio test for the number of factors in static approximate factor models," Computational Statistics & Data Analysis, Elsevier, vol. 112(C), pages 235-241.
    6. He, Yong & Zhang, Liang & Ji, Jiadong & Zhang, Xinsheng, 2019. "Robust feature screening for elliptical copula regression model," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 568-582.
    7. Aït-Sahalia, Yacine & Xiu, Dacheng, 2017. "Using principal component analysis to estimate a high dimensional factor model with high-frequency data," Journal of Econometrics, Elsevier, vol. 201(2), pages 384-399.
    8. Amengual, Dante & Watson, Mark W., 2007. "Consistent Estimation of the Number of Dynamic Factors in a Large N and T Panel," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 91-96, January.
    9. Hallin, Marc & Liska, Roman, 2007. "Determining the Number of Factors in the General Dynamic Factor Model," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 603-617, June.
    10. Calzolari, Giorgio & Halbleib, Roxana, 2018. "Estimating stable latent factor models by indirect inference," Journal of Econometrics, Elsevier, vol. 205(1), pages 280-301.
    11. Xin-Bing Kong, 2017. "On the number of common factors with high-frequency data," Biometrika, Biometrika Trust, vol. 104(2), pages 397-410.
    12. He, Yong & Zhang, Xinsheng & Wang, Pingping & Zhang, Liwen, 2017. "High dimensional Gaussian copula graphical model with FDR control," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 457-474.
    13. Bai, Jushan & Ng, Serena, 2007. "Determining the Number of Primitive Shocks in Factor Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 52-60, January.
    14. Fang Han & Han Liu, 2018. "ECA: High-Dimensional Elliptical Component Analysis in Non-Gaussian Distributions," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(521), pages 252-268, January.
    15. Marden, John I., 1999. "Some robust estimates of principal components," Statistics & Probability Letters, Elsevier, vol. 43(4), pages 349-359, July.
    16. Wu, Jianhong, 2016. "Robust determination for the number of common factors in the approximate factor models," Economics Letters, Elsevier, vol. 144(C), pages 102-106.
    17. Chamberlain, Gary & Rothschild, Michael, 1983. "Arbitrage, Factor Structure, and Mean-Variance Analysis on Large Asset Markets," Econometrica, Econometric Society, vol. 51(5), pages 1281-1304, September.
    18. Fang Han & Han Liu, 2014. "Scale-Invariant Sparse PCA on High-Dimensional Meta-Elliptical Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 275-287, March.
    19. Alexei Onatski, 2010. "Determining the Number of Factors from Empirical Distribution of Eigenvalues," The Review of Economics and Statistics, MIT Press, vol. 92(4), pages 1004-1016, November.
    20. Mehmet Caner & Xu Han, 2014. "Selecting the Correct Number of Factors in Approximate Factor Models: The Large Panel Case With Group Bridge Estimators," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(3), pages 359-374, July.
    21. Fang, Hong-Bin & Fang, Kai-Tai & Kotz, Samuel, 2002. "The Meta-elliptical Distributions with Given Marginals," Journal of Multivariate Analysis, Elsevier, vol. 82(1), pages 1-16, July.
    22. Claudia Klüppelberg & Gabriel Kuhn, 2009. "Copula structure analysis," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(3), pages 737-753, June.
    23. Lam, Clifford & Yao, Qiwei, 2012. "Factor modeling for high-dimensional time series: inference for the number of factors," LSE Research Online Documents on Economics 45684, London School of Economics and Political Science, LSE Library.
    24. He, Yong & Zhang, Xinsheng & Zhang, Liwen, 2018. "Variable selection for high dimensional Gaussian copula regression model: An adaptive hypothesis testing procedure," Computational Statistics & Data Analysis, Elsevier, vol. 124(C), pages 132-150.
    25. Alessi, Lucia & Barigozzi, Matteo & Capasso, Marco, 2010. "Improved penalization for determining the number of factors in approximate factor models," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1806-1813, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Shuquan & Ling, Nengxiang, 2023. "Robust projected principal component analysis for large-dimensional semiparametric factor modeling," Journal of Multivariate Analysis, Elsevier, vol. 195(C).
    2. He, Yong & Zhang, Mingjuan & Zhang, Xinsheng & Zhou, Wang, 2020. "High-dimensional two-sample mean vectors test and support recovery with factor adjustment," Computational Statistics & Data Analysis, Elsevier, vol. 151(C).
    3. Shuquan Yang & Nengxiang Ling & Yulin Gong, 2022. "Robust estimation of the number of factors for the pair-elliptical factor models," Computational Statistics, Springer, vol. 37(3), pages 1495-1522, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuquan Yang & Nengxiang Ling & Yulin Gong, 2022. "Robust estimation of the number of factors for the pair-elliptical factor models," Computational Statistics, Springer, vol. 37(3), pages 1495-1522, July.
    2. Xia, Qiang & Liang, Rubing & Wu, Jianhong, 2017. "Transformed contribution ratio test for the number of factors in static approximate factor models," Computational Statistics & Data Analysis, Elsevier, vol. 112(C), pages 235-241.
    3. Ruan Weihua & Hou Qian, 2021. "Determining the Number of Factors in Static Approximate Factor Models Using Discrete Fourier Transforms and Pseudo-Eigenvalues," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 241(1), pages 71-117, February.
    4. Matteo Barigozzi & Marc Hallin, 2023. "Dynamic Factor Models: a Genealogy," Papers 2310.17278, arXiv.org, revised Jan 2024.
    5. Gagliardini, Patrick & Ossola, Elisa & Scaillet, Olivier, 2019. "A diagnostic criterion for approximate factor structure," Journal of Econometrics, Elsevier, vol. 212(2), pages 503-521.
    6. Mao Takongmo, Charles Olivier & Stevanovic, Dalibor, 2015. "Selection Of The Number Of Factors In Presence Of Structural Instability: A Monte Carlo Study," L'Actualité Economique, Société Canadienne de Science Economique, vol. 91(1-2), pages 177-233, Mars-Juin.
    7. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    8. Poncela, Pilar & Ruiz, Esther & Miranda, Karen, 2021. "Factor extraction using Kalman filter and smoothing: This is not just another survey," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1399-1425.
    9. Forni, Mario & Cavicchioli, Maddalena & Lippi, Marco & Zaffaroni, Paolo, 2016. "Eigenvalue Ratio Estimators for the Number of Common Factors," CEPR Discussion Papers 11440, C.E.P.R. Discussion Papers.
    10. Yuefeng Han & Rong Chen & Cun-Hui Zhang, 2020. "Rank Determination in Tensor Factor Model," Papers 2011.07131, arXiv.org, revised May 2022.
    11. Matteo Barigozzi & Antonio M. Conti & Matteo Luciani, 2014. "Do Euro Area Countries Respond Asymmetrically to the Common Monetary Policy?," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 76(5), pages 693-714, October.
    12. Gu, Shihao & Kelly, Bryan & Xiu, Dacheng, 2021. "Autoencoder asset pricing models," Journal of Econometrics, Elsevier, vol. 222(1), pages 429-450.
    13. Matteo Barigozzi & Marco Lippi & Matteo Luciani, 2016. "Non-Stationary Dynamic Factor Models for Large Datasets," Finance and Economics Discussion Series 2016-024, Board of Governors of the Federal Reserve System (U.S.).
    14. Forni, Mario & Hallin, Marc & Lippi, Marco & Zaffaroni, Paolo, 2017. "Dynamic factor models with infinite-dimensional factor space: Asymptotic analysis," Journal of Econometrics, Elsevier, vol. 199(1), pages 74-92.
    15. Matteo Barigozzi & Lorenzo Trapani, 2018. "Determining the dimension of factor structures in non-stationary large datasets," Papers 1806.03647, arXiv.org.
    16. Matteo Barigozzi & Marco Lippi & Matteo Luciani, 2014. "Dynamic Factor Models, Cointegration and Error Correction Mechanisms," Working Papers ECARES ECARES 2014-14, ULB -- Universite Libre de Bruxelles.
    17. Francisco Corona & Pilar Poncela & Esther Ruiz, 2017. "Determining the number of factors after stationary univariate transformations," Empirical Economics, Springer, vol. 53(1), pages 351-372, August.
    18. Pilar Poncela & Esther Ruiz, 2016. "Small- Versus Big-Data Factor Extraction in Dynamic Factor Models: An Empirical Assessment," Advances in Econometrics, in: Dynamic Factor Models, volume 35, pages 401-434, Emerald Group Publishing Limited.
    19. Matteo Luciani, 2015. "Monetary Policy and the Housing Market: A Structural Factor Analysis," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(2), pages 199-218, March.
    20. Olivier Fortin‐Gagnon & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "A large Canadian database for macroeconomic analysis," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 55(4), pages 1799-1833, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:174:y:2019:i:c:s0047259x18304378. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.