IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v121y2013icp127-138.html
   My bibliography  Save this article

Strictly stationary solutions of ARMA equations in Banach spaces

Author

Listed:
  • Spangenberg, Felix

Abstract

We obtain necessary and sufficient conditions for the existence of strictly stationary solutions of ARMA equations in Banach spaces with independent and identically distributed noise under certain assumptions. First, we obtain conditions for ARMA(1,q) equations by excluding zero and the unit circle from the spectrum of the operator of the AR part. We then extend this to ARMA(p,q) equations. Finally, we discuss various examples.

Suggested Citation

  • Spangenberg, Felix, 2013. "Strictly stationary solutions of ARMA equations in Banach spaces," Journal of Multivariate Analysis, Elsevier, vol. 121(C), pages 127-138.
  • Handle: RePEc:eee:jmvana:v:121:y:2013:i:c:p:127-138
    DOI: 10.1016/j.jmva.2013.06.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X13001280
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2013.06.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Philippe C. Besse & Herve Cardot & David B. Stephenson, 2000. "Autoregressive Forecasting of Some Functional Climatic Variations," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 27(4), pages 673-687, December.
    2. Brockwell, Peter J. & Lindner, Alexander, 2009. "Existence and uniqueness of stationary Lévy-driven CARMA processes," Stochastic Processes and their Applications, Elsevier, vol. 119(8), pages 2660-2681, August.
    3. Meinguet, Thomas & Segers, Johan, 2010. "Regularly varying time series in Banach spaces," LIDAM Discussion Papers ISBA 2010002, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    4. Peter J. Brockwell & Alexander Lindner, 2010. "Strictly stationary solutions of autoregressive moving average equations," Biometrika, Biometrika Trust, vol. 97(3), pages 765-772.
    5. Peter Brockwell & Alexander Lindner & Bernd Vollenbröker, 2012. "Strictly stationary solutions of multivariate ARMA equations with i.i.d. noise," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(6), pages 1089-1119, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ruiz-Medina, María D. & Álvarez-Liébana, Javier, 2019. "Strongly consistent autoregressive predictors in abstract Banach spaces," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 186-201.
    2. Chao Zhang & Piotr Kokoszka & Alexander Petersen, 2022. "Wasserstein autoregressive models for density time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(1), pages 30-52, January.
    3. Klepsch, J. & Klüppelberg, C. & Wei, T., 2017. "Prediction of functional ARMA processes with an application to traffic data," Econometrics and Statistics, Elsevier, vol. 1(C), pages 128-149.
    4. Rice, Gregory & Wirjanto, Tony & Zhao, Yuqian, 2021. "Exploring volatility of crude oil intra-day return curves: a functional GARCH-X Model," MPRA Paper 109231, University Library of Munich, Germany.
    5. Klepsch, J. & Klüppelberg, C., 2017. "An innovations algorithm for the prediction of functional linear processes," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 252-271.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ernst, Philip A. & Brown, Lawrence D. & Shepp, Larry & Wolpert, Robert L., 2017. "Stationary Gaussian Markov processes as limits of stationary autoregressive time series," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 180-186.
    2. Ayse Yilmaz & Ufuk Yolcu, 2022. "Dendritic neuron model neural network trained by modified particle swarm optimization for time‐series forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(4), pages 793-809, July.
    3. Mingotti, Nicola & Lillo Rodríguez, Rosa Elvira & Romo, Juan, 2015. "A Random Walk Test for Functional Time Series," DES - Working Papers. Statistics and Econometrics. WS ws1506, Universidad Carlos III de Madrid. Departamento de Estadística.
    4. Bowsher, Clive G. & Meeks, Roland, 2008. "The Dynamics of Economic Functions: Modeling and Forecasting the Yield Curve," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1419-1437.
    5. Zhang, Xianyang, 2016. "White noise testing and model diagnostic checking for functional time series," Journal of Econometrics, Elsevier, vol. 194(1), pages 76-95.
    6. Kokoszka, Piotr & Kulik, Rafał, 2023. "Principal component analysis of infinite variance functional data," Journal of Multivariate Analysis, Elsevier, vol. 193(C).
    7. Poskitt, D.S. & Sengarapillai, Arivalzahan, 2013. "Description length and dimensionality reduction in functional data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 98-113.
    8. Vicky Fasen & Florian Fuchs, 2013. "Spectral estimates for high-frequency sampled continuous-time autoregressive moving average processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(5), pages 532-551, September.
    9. Kargin, V. & Onatski, A., 2008. "Curve forecasting by functional autoregression," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2508-2526, November.
    10. Kadiri Nadia & Rabhi Abbes & Bouchentouf Amina Angelika, 2018. "Strong uniform consistency rates of conditional quantile estimation in the single functional index model under random censorship," Dependence Modeling, De Gruyter, vol. 6(1), pages 197-227, November.
    11. Kosiorowski Daniel & Mielczarek Dominik & Rydlewski Jerzy P. & Snarska Małgorzata, 2018. "Generalized Exponential Smoothing In Prediction Of Hierarchical Time Series," Statistics in Transition New Series, Polish Statistical Association, vol. 19(2), pages 331-350, June.
    12. Chuyuan Lin & Ying Yu & Lucas Y. Wu & Jiguo Cao, 2023. "Unsupervised learning on U.S. weather forecast performance," Computational Statistics, Springer, vol. 38(3), pages 1193-1213, September.
    13. Peter J. Brockwell & Yasumasa Matsuda, 2015. "Levy-driven CARMA Random Fields on Rn," TERG Discussion Papers 339, Graduate School of Economics and Management, Tohoku University.
    14. Clive Bowsher & Roland Meeks, 2006. "High Dimensional Yield Curves: Models and Forecasting," Economics Series Working Papers 2006-FE-11, University of Oxford, Department of Economics.
    15. Yining Chen, 2015. "Semiparametric Time Series Models with Log-concave Innovations: Maximum Likelihood Estimation and its Consistency," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(1), pages 1-31, March.
    16. Boukhiar, Souad & Mourid, Tahar, 2022. "Resolvent estimators for functional autoregressive processes with random coefficients," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    17. Martin Drapatz, 2016. "Strictly stationary solutions of spatial ARMA equations," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 68(2), pages 385-412, April.
    18. Pham, Viet Son, 2020. "Lévy-driven causal CARMA random fields," Stochastic Processes and their Applications, Elsevier, vol. 130(12), pages 7547-7574.
    19. Laukaitis, Algirdas, 2008. "Functional data analysis for cash flow and transactions intensity continuous-time prediction using Hilbert-valued autoregressive processes," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1607-1614, March.
    20. Devin Didericksen & Piotr Kokoszka & Xi Zhang, 2012. "Empirical properties of forecasts with the functional autoregressive model," Computational Statistics, Springer, vol. 27(2), pages 285-298, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:121:y:2013:i:c:p:127-138. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.