Advanced Search
MyIDEAS: Login to save this article or follow this journal

Mixed Equilibrium in a Downsian Model with a Favored Candidate

Contents:

Author Info

  • Aragones, Enriqueta
  • Palfrey, Thomas R.

Abstract

This paper examines competition in the standard one-dimensional Downsian model of two-candidate elections, but where one candidate (A) enjoys an advantage over the other candidate (D). Voters' preferences are Euclidean, but any voter will vote for candidate A over candidate D unless D is closer to her ideal point by some fixed distance δ. The location of the median voter's ideal point is uncertain, and its distribution is commonly known by both candidates. The candidates simultaneously choose locations to maximize the probability of victory. Pure strategy equilibria often fails to exist in this model, except under special conditions about δ and the distribution of the median ideal point. We solve for the essentially unique symmetric mixed equilibrium, show that candidate A adopts more moderate policies than candidate D, and obtain some comparative statics results about the probability of victory and the expected distance between the two candidates' policies.

(This abstract was borrowed from another version of this item.)

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.sciencedirect.com/science/article/B6WJ3-45F4WM8-7/2/167b576b9df61868bb11e168dd6b2694
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Elsevier in its journal Journal of Economic Theory.

Volume (Year): 103 (2002)
Issue (Month): 1 (March)
Pages: 131-161

as in new window
Handle: RePEc:eee:jetheo:v:103:y:2002:i:1:p:131-161

Contact details of provider:
Web page: http://www.elsevier.com/locate/inca/622869

Related research

Keywords:

Other versions of this item:

Find related papers by JEL classification:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Bernhardt, M. Daniel & Ingerman, Daniel E., 1985. "Candidate reputations and the `incumbency effect'," Journal of Public Economics, Elsevier, vol. 27(1), pages 47-67, June.
  2. Adams, James, 1999. " Policy Divergence in Multicandidate Probabilistic Spatial Voting," Public Choice, Springer, vol. 100(1-2), pages 103-22, July.
  3. Ansolabehere, Stephen & Snyder, James M, Jr, 2000. " Valence Politics and Equilibrium in Spatial Election Models," Public Choice, Springer, vol. 103(3-4), pages 327-36, June.
  4. Dasgupta, Partha & Maskin, Eric, 1986. "The Existence of Equilibrium in Discontinuous Economic Games, I: Theory," Review of Economic Studies, Wiley Blackwell, vol. 53(1), pages 1-26, January.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
This item has more than 25 citations. To prevent cluttering this page, these citations are listed on a separate page.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:eee:jetheo:v:103:y:2002:i:1:p:131-161. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.