Advanced Search
MyIDEAS: Login

Optimal control of interacting systems with DNSS property: The case of illicit drug use

Contents:

Author Info

  • Zeiler, I.
  • Caulkins, J.P.
  • Tragler, G.
Registered author(s):

    Abstract

    Abstract In this paper we generalize a one-dimensional optimal control problem with DNSS property to a two-dimensional optimal control problem. This is done by taking the direct product of the model with itself, i.e. we combine two similar system dynamics under a joint objective functional that is separable in both states and controls. This framework can be applied to the construction of various optimal control problems, such as optimal marketing of related products, optimal growth of separate but interacting economies, or optimal control of two related capital stocks. We study such a system for a particular case drawn from the domain of drug control. The main result of this paper is that in this domain even a modest amount of interaction can sometimes make a very big difference. Hence, drawing conclusions by simplifying the real world into two independent, one-dimensional models may be problematic. Methodologically the combination of two systems with DNSS property leads to a fascinating series of situations with multiple optimal steady states and associated threshold behavior. These instances reflect some important recent developments in optimal dynamic control theory.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.sciencedirect.com/science/article/B6V8F-521NW4M-1/2/70ac505441719b5f32eb97ebc0397ef1
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal Journal of Economic Behavior & Organization.

    Volume (Year): 78 (2011)
    Issue (Month): 1-2 (April)
    Pages: 60-73

    as in new window
    Handle: RePEc:eee:jeborg:v:78:y:2011:i:1-2:p:60-73

    Contact details of provider:
    Web page: http://www.elsevier.com/locate/jebo

    Related research

    Keywords: Optimal control Indifference points Multiple equilibria DNSS points Illicit drug use Interacting systems;

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Wagener, F. O. O., 2003. "Skiba points and heteroclinic bifurcations, with applications to the shallow lake system," Journal of Economic Dynamics and Control, Elsevier, vol. 27(9), pages 1533-1561, July.
    2. Dechert, W. Davis & Nishimura, Kazuo, 1983. "A complete characterization of optimal growth paths in an aggregated model with a non-concave production function," Journal of Economic Theory, Elsevier, vol. 31(2), pages 332-354, December.
    3. Caulkins, Jonathan P. & Hartl, Richard F. & Kort, Peter M. & Feichtinger, Gustav, 2007. "Explaining fashion cycles: Imitators chasing innovators in product space," Journal of Economic Dynamics and Control, Elsevier, vol. 31(5), pages 1535-1556, May.
    4. W.A. Brock & D. Starrett, 2003. "Managing Systems with Non-convex Positive Feedback," Environmental & Resource Economics, European Association of Environmental and Resource Economists, vol. 26(4), pages 575-602, December.
    5. Karl-Göran Mäler & Anastasios Xepapadeas & Aart de Zeeuw, 2003. "The Economics of Shallow Lakes," Environmental & Resource Economics, European Association of Environmental and Resource Economists, vol. 26(4), pages 603-624, December.
    6. Léonard,Daniel & Long,Ngo van, 1992. "Optimal Control Theory and Static Optimization in Economics," Cambridge Books, Cambridge University Press, number 9780521331586, October.
    7. Dechert, W.D. & O'Donnell, S.I., 2006. "The stochastic lake game: A numerical solution," Journal of Economic Dynamics and Control, Elsevier, vol. 30(9-10), pages 1569-1587.
    8. Skiba, A K, 1978. "Optimal Growth with a Convex-Concave Production Function," Econometrica, Econometric Society, vol. 46(3), pages 527-39, May.
    9. Caulkins, Jonathan P. & Feichtinger, Gustav & Johnson, Michael & Tragler, Gernot & Yegorov, Yuri, 2005. "Skiba thresholds in a model of controlled migration," Journal of Economic Behavior & Organization, Elsevier, vol. 57(4), pages 490-508, August.
    10. Behrens, Doris A. & Caulkins, Jonathan P. & Tragler, Gernot & Feichtinger, Gustav, 2002. "Why present-oriented societies undergo cycles of drug epidemics," Journal of Economic Dynamics and Control, Elsevier, vol. 26(6), pages 919-936, June.
    11. Feichtinger, Gustav & Grienauer, Waltraud & Tragler, Gernot, 2002. "Optimal dynamic law enforcement," European Journal of Operational Research, Elsevier, vol. 141(1), pages 58-69, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Caulkins, Jonathan P. & Feichtinger, Gustav & Grass, Dieter & Hartl, Richard F. & Kort, Peter M. & Seidl, Andrea, 2013. "When to make proprietary software open source," Journal of Economic Dynamics and Control, Elsevier, vol. 37(6), pages 1182-1194.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:eee:jeborg:v:78:y:2011:i:1-2:p:60-73. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.