IDEAS home Printed from https://ideas.repec.org/a/eee/jaitra/v98y2022ics0969699721001435.html
   My bibliography  Save this article

Exploratory analysis of air travel demand stimulation in first-time served markets

Author

Listed:
  • Abdelghany, Ahmed
  • Guzhva, Vitaly S.

Abstract

This paper presents an exploratory analysis of air travel demand stimulation by non-stop service in first-time served markets (FTMS). Using a data sample of 5,170 records representing service entries in global FTMS from September 2015 to August 2019, we examine demand response to the newly introduced non-stop service and the corresponding market characteristics. Four different variables are considered to represent air travel demand stimulation that can be adopted by practitioners. These variables include Stimulated Passengers, Stimulation Multiplication Factor, Stimulation Rate, and Passengers Stimulated per Non-stop Seat. We estimate a multiple regression model for each of these four dependent variables. The main goal is to understand how the different representations of demand stimulation relate to each other and how their corresponding models explain the different representations of demand stimulation. Results show that there are differences in how these four variables represent demand stimulation and the explanatory power of their corresponding models.

Suggested Citation

  • Abdelghany, Ahmed & Guzhva, Vitaly S., 2022. "Exploratory analysis of air travel demand stimulation in first-time served markets," Journal of Air Transport Management, Elsevier, vol. 98(C).
  • Handle: RePEc:eee:jaitra:v:98:y:2022:i:c:s0969699721001435
    DOI: 10.1016/j.jairtraman.2021.102162
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0969699721001435
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jairtraman.2021.102162?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lawton, Thomas C. & Solomko, Stanislav, 2005. "When being the lowest cost is not enough: Building a successful low-fare airline business model in Asia," Journal of Air Transport Management, Elsevier, vol. 11(6), pages 355-362.
    2. Coldren, Gregory M. & Koppelman, Frank S. & Kasturirangan, Krishnan & Mukherjee, Amit, 2003. "Modeling aggregate air-travel itinerary shares: logit model development at a major US airline," Journal of Air Transport Management, Elsevier, vol. 9(6), pages 361-369.
    3. Ahmed Abdelghany & Khaled Abdelghany & Ching-Wen Huang, 2021. "An integrated reinforced learning and network competition analysis for calibrating airline itinerary choice models with constrained demand," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 20(3), pages 227-247, June.
    4. Santos, Anabela & Cincera, Michele, 2018. "Tourism demand, low cost carriers and European institutions: The case of Brussels," Journal of Transport Geography, Elsevier, vol. 73(C), pages 163-171.
    5. Coldren, Gregory M. & Koppelman, Frank S., 2005. "Modeling the competition among air-travel itinerary shares: GEV model development," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(4), pages 345-365, May.
    6. Herring, Jordan & Lurkin, Dr Virginie & Garrow, Dr Laurie A. & John-Paul Clarke, Dr & Bierlaire, Dr Michel, 2019. "Airline customers’ connection time preferences in domestic U.S. markets," Journal of Air Transport Management, Elsevier, vol. 79(C), pages 1-1.
    7. Hsiao, Chieh-Yu & Hansen, Mark, 2011. "A passenger demand model for air transportation in a hub-and-spoke network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(6), pages 1112-1125.
    8. Carson, Richard T. & Cenesizoglu, Tolga & Parker, Roger, 2011. "Forecasting (aggregate) demand for US commercial air travel," International Journal of Forecasting, Elsevier, vol. 27(3), pages 923-941, July.
    9. Robert M. Emrich & Frederick H. deB. Harris, 2008. "Share shift and airport substitution in origin-destination markets with low-cost entrants," International Journal of Revenue Management, Inderscience Enterprises Ltd, vol. 2(2), pages 109-122.
    10. D’Alfonso, Tiziana & Jiang, Changmin & Bracaglia, Valentina, 2016. "Air transport and high-speed rail competition: Environmental implications and mitigation strategies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 92(C), pages 261-276.
    11. Valdes, Victor, 2015. "Determinants of air travel demand in Middle Income Countries," Journal of Air Transport Management, Elsevier, vol. 42(C), pages 75-84.
    12. Kopsch, Fredrik, 2012. "A demand model for domestic air travel in Sweden," Journal of Air Transport Management, Elsevier, vol. 20(C), pages 46-48.
    13. Abed, Seraj Y. & Ba-Fail, Abdullah O. & Jasimuddin, Sajjad M., 2001. "An econometric analysis of international air travel demand in Saudi Arabia," Journal of Air Transport Management, Elsevier, vol. 7(3), pages 143-148.
    14. Zou, Li & Yu, Chunyan, 2020. "The evolving market entry strategy: A comparative study of Southwest and JetBlue," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 682-695.
    15. Pitfield, D.E., 2008. "The Southwest effect: A time-series analysis on passengers carried by selected routes and a market share comparison," Journal of Air Transport Management, Elsevier, vol. 14(3), pages 113-122.
    16. Cai, Dong-ling & Xiao, Yi-bin & Jiang, Changmin, 2021. "Competition between high-speed rail and airlines: Considering both passenger and cargo," Transport Policy, Elsevier, vol. 110(C), pages 379-393.
    17. Morrison, Steven A & Winston, Clifford, 1990. "The Dynamics of Airline Pricing and Competition," American Economic Review, American Economic Association, vol. 80(2), pages 389-393, May.
    18. Suh, Daniel Y. & Ryerson, Megan S., 2019. "Forecast to grow: Aviation demand forecasting in an era of demand uncertainty and optimism bias," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 128(C), pages 400-416.
    19. Jan Brueckner & Darin Lee & Ethan Singer, 2014. "City-Pairs Versus Airport-Pairs: A Market-Definition Methodology for the Airline Industry," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 44(1), pages 1-25, February.
    20. Birolini, Sebastian & Antunes, António Pais & Cattaneo, Mattia & Malighetti, Paolo & Paleari, Stefano, 2021. "Integrated flight scheduling and fleet assignment with improved supply-demand interactions," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 162-180.
    21. Sismanidou, Athina & Tarradellas, Joan & Bel, Germà & Fageda, Xavier, 2013. "Estimating potential long-haul air passenger traffic in national networks containing two or more dominant cities," Journal of Transport Geography, Elsevier, vol. 26(C), pages 108-116.
    22. Abdelghany, Ahmed & Guzhva, Vitaly S., 2010. "Analyzing airlines market service using panel data," Journal of Air Transport Management, Elsevier, vol. 16(1), pages 20-25.
    23. Chung, Jin Young & Whang, Taehee, 2011. "The impact of low cost carriers on Korean Island tourism," Journal of Transport Geography, Elsevier, vol. 19(6), pages 1335-1340.
    24. Rey, Belén & Myro, Rafael L. & Galera, Asun, 2011. "Effect of low-cost airlines on tourism in Spain. A dynamic panel data model," Journal of Air Transport Management, Elsevier, vol. 17(3), pages 163-167.
    25. Gelhausen, Marc C. & Berster, Peter & Wilken, Dieter, 2013. "Do airport capacity constraints have a serious impact on the future development of air traffic?," Journal of Air Transport Management, Elsevier, vol. 28(C), pages 3-13.
    26. Hazledine, Tim, 2009. "Border effects for domestic and international Canadian passenger air travel," Journal of Air Transport Management, Elsevier, vol. 15(1), pages 7-13.
    27. Bauer, Linus Benjamin & Bloch, Daniel & Merkert, Rico, 2020. "Ultra Long-Haul: An emerging business model accelerated by COVID-19," Journal of Air Transport Management, Elsevier, vol. 89(C).
    28. Lhéritier, Alix & Bocamazo, Michael & Delahaye, Thierry & Acuna-Agost, Rodrigo, 2019. "Airline itinerary choice modeling using machine learning," Journal of choice modelling, Elsevier, vol. 31(C), pages 198-209.
    29. Joan Calzada & Xavier Fageda, 2019. "Route expansion in the European air transport market," Regional Studies, Taylor & Francis Journals, vol. 53(8), pages 1149-1160, August.
    30. Zhang, Fangni & Graham, Daniel J. & Wong, Mark Siu Chun, 2018. "Quantifying the substitutability and complementarity between high-speed rail and air transport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 191-215.
    31. Jörg Claussen & Christian Essling & Christian Peukert, 2018. "Demand variation, strategic flexibility and market entry: Evidence from the U.S. airline industry," Strategic Management Journal, Wiley Blackwell, vol. 39(11), pages 2877-2898, November.
    32. Birolini, Sebastian & Cattaneo, Mattia & Malighetti, Paolo & Morlotti, Chiara, 2020. "Integrated origin-based demand modeling for air transportation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    33. Grosche, Tobias & Rothlauf, Franz & Heinzl, Armin, 2007. "Gravity models for airline passenger volume estimation," Journal of Air Transport Management, Elsevier, vol. 13(4), pages 175-183.
    34. Judit Guimera Busquets & Eduardo Alonso & Antony D. Evans, 2018. "Air itinerary shares estimation using multinomial logit models," Transportation Planning and Technology, Taylor & Francis Journals, vol. 41(1), pages 3-16, January.
    35. Albalate, Daniel & Bel, Germà & Fageda, Xavier, 2015. "Competition and cooperation between high-speed rail and air transportation services in Europe," Journal of Transport Geography, Elsevier, vol. 42(C), pages 166-174.
    36. Wei, Wenbin & Hansen, Mark, 2005. "Impact of aircraft size and seat availability on airlines' demand and market share in duopoly markets," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 41(4), pages 315-327, July.
    37. Li, Tao & Wan, Yan, 2019. "Estimating the geographic distribution of originating air travel demand using a bi-level optimization model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 131(C), pages 267-291.
    38. Lurkin, Virginie & Garrow, Laurie A. & Higgins, Matthew J. & Newman, Jeffrey P. & Schyns, Michael, 2018. "Modeling competition among airline itineraries," Transportation Research Part A: Policy and Practice, Elsevier, vol. 113(C), pages 157-172.
    39. Wilken, Dieter & Berster, Peter & Gelhausen, Marc C., 2016. "Analysis of demand structures on intercontinental routes to and from Europe with a view to identifying potential for new low-cost services," Journal of Air Transport Management, Elsevier, vol. 56(PB), pages 79-90.
    40. Alekseev, K.P.G. & Seixas, J.M., 2009. "A multivariate neural forecasting modeling for air transport – Preprocessed by decomposition: A Brazilian application," Journal of Air Transport Management, Elsevier, vol. 15(5), pages 212-216.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdelghany, Ahmed & Abdelghany, Khaled & Azadian, Farshid, 2023. "The airline seat capacity allocation problem: An expected marginal profit approach," Journal of Air Transport Management, Elsevier, vol. 112(C).
    2. Wong, Collin WH & Cheung, Tommy King Yin & Zhang, Anming, 2023. "A connectivity-based methodology for new air route identification," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Birolini, Sebastian & Cattaneo, Mattia & Malighetti, Paolo & Morlotti, Chiara, 2020. "Integrated origin-based demand modeling for air transportation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    2. Wang, Sen & Gao, Yi, 2021. "A literature review and citation analyses of air travel demand studies published between 2010 and 2020," Journal of Air Transport Management, Elsevier, vol. 97(C).
    3. Tirtha, Sudipta Dey & Bhowmik, Tanmoy & Eluru, Naveen, 2023. "Understanding the factors affecting airport level demand (arrivals and departures) using a novel modeling approach," Journal of Air Transport Management, Elsevier, vol. 106(C).
    4. Morlotti, Chiara & Birolini, Sebastian & Malighetti, Paolo & Redondi, Renato, 2023. "A latent class approach to estimate air travelers’ propensity toward connecting itineraries," Research in Transportation Economics, Elsevier, vol. 99(C).
    5. Frédéric Dobruszkes & Christian Vandermotten, 2022. "Do scale and the type of markets matter? Revisiting the determinants of passenger air services worldwide," ULB Institutional Repository 2013/336304, ULB -- Universite Libre de Bruxelles.
    6. Dobruszkes, Frédéric & Vandermotten, Christian, 2022. "Do scale and the type of markets matter? Revisiting the determinants of passenger air services worldwide," Journal of Air Transport Management, Elsevier, vol. 99(C).
    7. Tao Li, 2017. "A Demand Estimator Based on a Nested Logit Model," Transportation Science, INFORMS, vol. 51(3), pages 918-930, August.
    8. Boonekamp, Thijs & Zuidberg, Joost & Burghouwt, Guillaume, 2018. "Determinants of air travel demand: The role of low-cost carriers, ethnic links and aviation-dependent employment," Transportation Research Part A: Policy and Practice, Elsevier, vol. 112(C), pages 18-28.
    9. Vergori, Anna Serena & Arima, Serena, 2022. "Low-cost carriers and tourism in the Italian regions: A segmented regression model," Annals of Tourism Research, Elsevier, vol. 97(C).
    10. Birolini, Sebastian & Jacquillat, Alexandre & Cattaneo, Mattia & Antunes, António Pais, 2021. "Airline Network Planning: Mixed-integer non-convex optimization with demand–supply interactions," Transportation Research Part B: Methodological, Elsevier, vol. 154(C), pages 100-124.
    11. Birolini, Sebastian & Antunes, António Pais & Cattaneo, Mattia & Malighetti, Paolo & Paleari, Stefano, 2021. "Integrated flight scheduling and fleet assignment with improved supply-demand interactions," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 162-180.
    12. Redondi, Renato & Birolini, Sebastian & Morlotti, Chiara & Paleari, Stefano, 2021. "Connectivity measures and passengers’ behavior: Comparing conventional connectivity models to predict itinerary market shares," Journal of Air Transport Management, Elsevier, vol. 90(C).
    13. Plakandaras, Vasilios & Papadimitriou, Theophilos & Gogas, Periklis, 2019. "Forecasting transportation demand for the U.S. market," Transportation Research Part A: Policy and Practice, Elsevier, vol. 126(C), pages 195-214.
    14. Jiang, Changmin & Wang, Kun & Wang, Qiang & Yang, Hangjun, 2022. "The Impact of High-Speed Rail Competition on Airline On-Time Performance," Transportation Research Part B: Methodological, Elsevier, vol. 161(C), pages 109-127.
    15. Hanson, Daniel & Toru Delibasi, Tuba & Gatti, Matteo & Cohen, Shamai, 2022. "How do changes in economic activity affect air passenger traffic? The use of state-dependent income elasticities to improve aviation forecasts," Journal of Air Transport Management, Elsevier, vol. 98(C).
    16. Kağan Albayrak, Muhammed Bilge & Özcan, İsmail Çağrı & Can, Raif & Dobruszkes, Frédéric, 2020. "The determinants of air passenger traffic at Turkish airports," Journal of Air Transport Management, Elsevier, vol. 86(C).
    17. Hu, Yi & Xiao, Jin & Deng, Ying & Xiao, Yi & Wang, Shouyang, 2015. "Domestic air passenger traffic and economic growth in China: Evidence from heterogeneous panel models," Journal of Air Transport Management, Elsevier, vol. 42(C), pages 95-100.
    18. Dey Tirtha, Sudipta & Bhowmik, Tanmoy & Eluru, Naveen, 2022. "An airport level framework for examining the impact of COVID-19 on airline demand," Transportation Research Part A: Policy and Practice, Elsevier, vol. 159(C), pages 169-181.
    19. Yang, Chih-Wen, 2016. "Entry effect of low-cost carriers on airport-pairs demand model using market concentration approach," Journal of Air Transport Management, Elsevier, vol. 57(C), pages 291-297.
    20. Wong, Collin WH & Cheung, Tommy King Yin & Zhang, Anming, 2023. "A connectivity-based methodology for new air route identification," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jaitra:v:98:y:2022:i:c:s0969699721001435. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/journal-of-air-transport-management/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.