IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v78y2018icp53-71.html
   My bibliography  Save this article

Dependent risk models with Archimedean copulas: A computational strategy based on common mixtures and applications

Author

Listed:
  • Cossette, Hélène
  • Marceau, Etienne
  • Mtalai, Itre
  • Veilleux, Déry

Abstract

In this paper, we investigate dependent risk models in which the dependence structure is defined by an Archimedean copula. Using such a structure with specific marginals, we derive explicit expressions for the pdf of the aggregated risk and other related quantities. The common mixture representation of Archimedean copulas is at the basis of a computational strategy proposed to find exact or approximated values of the distribution of the sum of risks in a general setup. Such results are then used to investigate risk models in regard to aggregation, capital allocation and ruin problems. An extension to nested Archimedean copulas is also discussed.

Suggested Citation

  • Cossette, Hélène & Marceau, Etienne & Mtalai, Itre & Veilleux, Déry, 2018. "Dependent risk models with Archimedean copulas: A computational strategy based on common mixtures and applications," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 53-71.
  • Handle: RePEc:eee:insuma:v:78:y:2018:i:c:p:53-71
    DOI: 10.1016/j.insmatheco.2017.11.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668717303815
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2017.11.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Albrecher, Hansjörg & Constantinescu, Corina & Loisel, Stephane, 2011. "Explicit ruin formulas for models with dependence among risks," Insurance: Mathematics and Economics, Elsevier, vol. 48(2), pages 265-270, March.
    2. Marius Hofert & Matthias Scherer, 2011. "CDO pricing with nested Archimedean copulas," Quantitative Finance, Taylor & Francis Journals, vol. 11(5), pages 775-787.
    3. Dickson, David C. M., 1992. "On the distribution of the surplus prior to ruin," Insurance: Mathematics and Economics, Elsevier, vol. 11(3), pages 191-207, October.
    4. Shiu, Elias S.W., 1989. "The Probability of Eventual Ruin in the Compound Binomial Model," ASTIN Bulletin, Cambridge University Press, vol. 19(2), pages 179-190, November.
    5. Willmot, Gordon E., 1993. "Ruin probabilities in the compound binomial model," Insurance: Mathematics and Economics, Elsevier, vol. 12(2), pages 133-142, April.
    6. Hofert, Marius, 2011. "Efficiently sampling nested Archimedean copulas," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 57-70, January.
    7. Gerber, Hans U., 1988. "Mathematical Fun with the Compound Binomial Process," ASTIN Bulletin, Cambridge University Press, vol. 18(2), pages 161-168, November.
    8. Mathieu Bargès & Hélène Cossette & Etienne Marceau, 2009. "TVaR-based capital allocation with copulas," Working Papers hal-00431265, HAL.
    9. Hofert, Marius & Mächler, Martin & McNeil, Alexander J., 2012. "Likelihood inference for Archimedean copulas in high dimensions under known margins," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 133-150.
    10. Frey, Rudiger & McNeil, Alexander J., 2002. "VaR and expected shortfall in portfolios of dependent credit risks: Conceptual and practical insights," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1317-1334, July.
    11. Hofert, Marius, 2008. "Sampling Archimedean copulas," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5163-5174, August.
    12. Joe, Harry & Hu, Taizhong, 1996. "Multivariate Distributions from Mixtures of Max-Infinitely Divisible Distributions," Journal of Multivariate Analysis, Elsevier, vol. 57(2), pages 240-265, May.
    13. Bargès, Mathieu & Cossette, Hélène & Marceau, Étienne, 2009. "TVaR-based capital allocation with copulas," Insurance: Mathematics and Economics, Elsevier, vol. 45(3), pages 348-361, December.
    14. Stéphane Loisel, 2011. "Explicit ruin formulas for dependent risks," Post-Print hal-00600093, HAL.
    15. Genest, Christian & Rivest, Louis-Paul, 2001. "On the multivariate probability integral transformation," Statistics & Probability Letters, Elsevier, vol. 53(4), pages 391-399, July.
    16. Furman, Edward & Zitikis, Ricardas, 2008. "Weighted risk capital allocations," Insurance: Mathematics and Economics, Elsevier, vol. 43(2), pages 263-269, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Choe, Geon Ho & Choi, So Eun & Jang, Hyun Jin, 2020. "Assessment of time-varying systemic risk in credit default swap indices: Simultaneity and contagiousness," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    2. Cossette, Hélène & Marceau, Etienne & Mtalai, Itre, 2019. "Collective risk models with dependence," Insurance: Mathematics and Economics, Elsevier, vol. 87(C), pages 153-168.
    3. Furman, Edward & Kye, Yisub & Su, Jianxi, 2021. "Multiplicative background risk models: Setting a course for the idiosyncratic risk factors distributed phase-type," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 153-167.
    4. Vadim Semenikhine & Edward Furman & Jianxi Su, 2018. "On a Multiplicative Multivariate Gamma Distribution with Applications in Insurance," Risks, MDPI, vol. 6(3), pages 1-20, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cossette, Hélène & Marceau, Etienne & Trufin, Julien & Zuyderhoff, Pierre, 2020. "Ruin-based risk measures in discrete-time risk models," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 246-261.
    2. Dutang, C. & Lefèvre, C. & Loisel, S., 2013. "On an asymptotic rule A+B/u for ultimate ruin probabilities under dependence by mixing," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 774-785.
    3. Cheng, Shixue & Gerber, Hans U. & Shiu, Elias S. W., 2000. "Discounted probabilities and ruin theory in the compound binomial model," Insurance: Mathematics and Economics, Elsevier, vol. 26(2-3), pages 239-250, May.
    4. Cossette, Hélène & Côté, Marie-Pier & Mailhot, Mélina & Marceau, Etienne, 2014. "A note on the computation of sharp numerical bounds for the distribution of the sum, product or ratio of dependent risks," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 1-20.
    5. Yang, Hu & Zhang, Zhimin & Lan, Chunmei, 2009. "Ruin problems in a discrete Markov risk model," Statistics & Probability Letters, Elsevier, vol. 79(1), pages 21-28, January.
    6. Loisel, Stéphane & Trufin, Julien, 2014. "Properties of a risk measure derived from the expected area in red," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 191-199.
    7. Hofert, Marius & Mächler, Martin & McNeil, Alexander J., 2012. "Likelihood inference for Archimedean copulas in high dimensions under known margins," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 133-150.
    8. Bao, Zhenhua & Song, Lixin & Liu, He, 2013. "A note on the inflated-parameter binomial distribution," Statistics & Probability Letters, Elsevier, vol. 83(8), pages 1911-1914.
    9. Chaoubi, Ihsan & Cossette, Hélène & Marceau, Etienne & Robert, Christian Y., 2021. "Hierarchical copulas with Archimedean blocks and asymmetric between-block pairs," Computational Statistics & Data Analysis, Elsevier, vol. 154(C).
    10. Mai Jan-Frederik, 2019. "Simulation algorithms for hierarchical Archimedean copulas beyond the completely monotone case," Dependence Modeling, De Gruyter, vol. 7(1), pages 202-214, January.
    11. Areski Cousin & Elena Di Bernadino, 2013. "On Multivariate Extensions of Value-at-Risk," Working Papers hal-00638382, HAL.
    12. Liu, Guoxin & Zhao, Jinyan, 2007. "Joint distributions of some actuarial random vectors in the compound binomial model," Insurance: Mathematics and Economics, Elsevier, vol. 40(1), pages 95-103, January.
    13. Jae-Kyung Woo & Haibo Liu, 2018. "Discounted Aggregate Claim Costs Until Ruin in the Discrete-Time Renewal Risk Model," Methodology and Computing in Applied Probability, Springer, vol. 20(4), pages 1285-1318, December.
    14. Claude Lefèvre & Stéphane Loisel, 2008. "On Finite-Time Ruin Probabilities for Classical Risk Models," Post-Print hal-00168958, HAL.
    15. Segers, Johan & Uyttendaele, Nathan, 2014. "Nonparametric estimation of the tree structure of a nested Archimedean copula," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 190-204.
    16. Constantinescu Corina D. & Kozubowski Tomasz J. & Qian Haoyu H., 2019. "Probability of ruin in discrete insurance risk model with dependent Pareto claims," Dependence Modeling, De Gruyter, vol. 7(1), pages 215-233, January.
    17. Grothe, Oliver & Hofert, Marius, 2015. "Construction and sampling of Archimedean and nested Archimedean Lévy copulas," Journal of Multivariate Analysis, Elsevier, vol. 138(C), pages 182-198.
    18. Cossette, Helene & Landriault, David & Marceau, Etienne, 2004. "Exact expressions and upper bound for ruin probabilities in the compound Markov binomial model," Insurance: Mathematics and Economics, Elsevier, vol. 34(3), pages 449-466, June.
    19. Chen, Mi & Yuen, Kam Chuen & Guo, Junyi, 2014. "Survival probabilities in a discrete semi-Markov risk model," Applied Mathematics and Computation, Elsevier, vol. 232(C), pages 205-215.
    20. Di Bernardino Elena & Rullière Didier, 2013. "On certain transformations of Archimedean copulas: Application to the non-parametric estimation of their generators," Dependence Modeling, De Gruyter, vol. 1, pages 1-36, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:78:y:2018:i:c:p:53-71. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.