Advanced Search
MyIDEAS: Login

On Finite-Time Ruin Probabilities for Classical Risk Models


Author Info

  • Claude Lefèvre

    (Département de Mathématique - Université Libre de Bruxelles)

  • Stéphane Loisel

    (SAF - Laboratoire de Sciences Actuarielle et Financière - Université Claude Bernard - Lyon I : EA2429)


This paper is concerned with the problem of ruin in the classical compound binomial and compound Poisson risk models. Our primary purpose is to extend to those models an exact formula derived by Picard and Lefèvre (1997) for the probability of (non-)ruin within finite time. First, a standard method based on the ballot theorem and an argument of Seal-type provides an initial (known) formula for that probability. Then, a concept of pseudo-distributions for the cumulated claim amounts, combined with some simple implications of the ballot theorem, leads to the desired formula. Two expressions for the (non-)ruin probability over an infinite horizon are also deduced as corollaries. Finally, an illustration within the framework of Solvency II is briefly presented.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL:
Download Restriction: no

Bibliographic Info

Paper provided by HAL in its series Post-Print with number hal-00168958.

as in new window
Date of creation: Jan 2008
Date of revision:
Publication status: Published, Scandinavian Actuarial Journal, 2008, 2008, 1, 41-60
Handle: RePEc:hal:journl:hal-00168958

Note: View the original document on HAL open archive server:
Contact details of provider:
Web page:

Related research

Keywords: ruin probability; finite and infinite horizon; compound binomial model; compound Poisson model; ballot theorem; pseudo-distributions; Solvency II; Value-at-Risk.;


References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Cheng, Shixue & Gerber, Hans U. & Shiu, Elias S. W., 2000. "Discounted probabilities and ruin theory in the compound binomial model," Insurance: Mathematics and Economics, Elsevier, vol. 26(2-3), pages 239-250, May.
  2. De Vylder, F. Etienne & Goovaerts, Marc J., 1999. "Explicit finite-time and infinite-time ruin probabilities in the continuous case," Insurance: Mathematics and Economics, Elsevier, vol. 24(3), pages 155-172, May.
  3. Stéphane Loisel & Christian Mazza & Didier Rullière, 2008. "Robustness analysis and convergence of empirical finite-time ruin probabilities and estimation risk solvency margin," Post-Print hal-00168714, HAL.
  4. Willmot, Gordon E., 1993. "Ruin probabilities in the compound binomial model," Insurance: Mathematics and Economics, Elsevier, vol. 12(2), pages 133-142, April.
  5. Rulliere, Didier & Loisel, Stephane, 2004. "Another look at the Picard-Lefevre formula for finite-time ruin probabilities," Insurance: Mathematics and Economics, Elsevier, vol. 35(2), pages 187-203, October.
  6. Cardoso, Rui M. R. & R. Waters, Howard, 2003. "Recursive calculation of finite time ruin probabilities under interest force," Insurance: Mathematics and Economics, Elsevier, vol. 33(3), pages 659-676, December.
  7. De Vylder, F. & Goovaerts, M. J., 1988. "Recursive calculation of finite-time ruin probabilities," Insurance: Mathematics and Economics, Elsevier, vol. 7(1), pages 1-7, January.
  8. Ignatov, Zvetan G. & Kaishev, Vladimir K. & Krachunov, Rossen S., 2001. "An improved finite-time ruin probability formula and its Mathematica implementation," Insurance: Mathematics and Economics, Elsevier, vol. 29(3), pages 375-386, December.
  9. Konstantopoulos, Takis, 1995. "Ballot theorems revisited," Statistics & Probability Letters, Elsevier, vol. 24(4), pages 331-338, September.
Full references (including those not matched with items on IDEAS)


Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Dutang, C. & Lefèvre, C. & Loisel, S., 2013. "On an asymptotic rule A+B/u for ultimate ruin probabilities under dependence by mixing," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 774-785.
  2. Christophe Dutang & Claude Lefèvre & Stéphane Loisel, 2013. "On an asymptotic rule A+B/u for ultimate ruin probabilities under dependence by mixing," Post-Print hal-00746251, HAL.
  3. Loisel, Stéphane & Mazza, Christian & Rullière, Didier, 2009. "Convergence and asymptotic variance of bootstrapped finite-time ruin probabilities with partly shifted risk processes," Insurance: Mathematics and Economics, Elsevier, vol. 45(3), pages 374-381, December.
  4. Romain Biard & Stéphane Loisel & Claudio Macci & Noel Veraverbeke, 2010. "Asymptotic behavior of the finite-time expected time-integrated negative part of some risk processes and optimal reserve allocation," Post-Print hal-00372525, HAL.
  5. Julien Trufin & Stéphane Loisel, 2013. "Ultimate ruin probability in discrete time with Bühlmann credibility premium adjustments," Post-Print hal-00426790, HAL.
  6. Gathy, Maude & Lefèvre, Claude, 2010. "On the Lagrangian Katz family of distributions as a claim frequency model," Insurance: Mathematics and Economics, Elsevier, vol. 47(1), pages 76-83, August.
  7. repec:hal:wpaper:hal-00746251 is not listed on IDEAS
  8. Irmina Czarna & Zbigniew Palmowski, 2009. "De Finetti's dividend problem and impulse control for a two-dimensional insurance risk process," Papers 0906.2100,, revised Feb 2011.
  9. Stéphane Loisel & Claude Lefèvre, 2009. "Finite-Time Ruin Probabilities for Discrete, Possibly Dependent, Claim Severities," Post-Print hal-00201377, HAL.


This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.


Access and download statistics


When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-00168958. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (CCSD).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.