IDEAS home Printed from https://ideas.repec.org/a/vrs/demode/v7y2019i1p202-214n10.html
   My bibliography  Save this article

Simulation algorithms for hierarchical Archimedean copulas beyond the completely monotone case

Author

Listed:
  • Mai Jan-Frederik

    (XAIA Investment GmbH, Sonnenstr. 19, 80331München, Germany)

Abstract

Two simulation algorithms for hierarchical Archimedean copulas in the case when intra-group generators are not necessarily completely monotone are presented. Both generalize existing algorithms for the completely monotone case. The underlying stochastic models for both algorithms arise as a particular instance of a more general probability space studied recently in Ressel, P. (2018): A multivariate version of Williamson’s theorem, ℓ1-symmetric survival functions, and generalized Archimedean copulas. Depend. Model. 6, 356–368. On this probability space the inter-group dependence need not be Archimedean, however, we highlight two particular circumstances that guarantee that a hierarchical Archimedean copula is obtained.

Suggested Citation

  • Mai Jan-Frederik, 2019. "Simulation algorithms for hierarchical Archimedean copulas beyond the completely monotone case," Dependence Modeling, De Gruyter, vol. 7(1), pages 202-214, January.
  • Handle: RePEc:vrs:demode:v:7:y:2019:i:1:p:202-214:n:10
    DOI: 10.1515/demo-2019-0010
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/demo-2019-0010
    Download Restriction: no

    File URL: https://libkey.io/10.1515/demo-2019-0010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hofert, Marius & Pham, David, 2013. "Densities of nested Archimedean copulas," Journal of Multivariate Analysis, Elsevier, vol. 118(C), pages 37-52.
    2. Marius Hofert & Matthias Scherer, 2011. "CDO pricing with nested Archimedean copulas," Quantitative Finance, Taylor & Francis Journals, vol. 11(5), pages 775-787.
    3. Segers, Johan & Uyttendaele, Nathan, 2014. "Nonparametric estimation of the tree structure of a nested Archimedean copula," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 190-204.
    4. Hering, Christian & Hofert, Marius & Mai, Jan-Frederik & Scherer, Matthias, 2010. "Constructing hierarchical Archimedean copulas with Lévy subordinators," Journal of Multivariate Analysis, Elsevier, vol. 101(6), pages 1428-1433, July.
    5. Rezapour, Mohsen, 2015. "On the construction of nested Archimedean copulas for d-monotone generators," Statistics & Probability Letters, Elsevier, vol. 101(C), pages 21-32.
    6. Nathan Uyttendaele, 2018. "On the estimation of nested Archimedean copulas: a theoretical and an experimental comparison," Computational Statistics, Springer, vol. 33(2), pages 1047-1070, June.
    7. Stephan Höcht & Rudi Zagst, 2010. "Pricing distressed CDOs with stochastic recovery," Review of Derivatives Research, Springer, vol. 13(3), pages 219-244, October.
    8. Hofert, Marius, 2008. "Sampling Archimedean copulas," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5163-5174, August.
    9. Hofert, Marius, 2011. "Efficiently sampling nested Archimedean copulas," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 57-70, January.
    10. Matsypura, Dmytro & Neo, Emily & Prokhorov, Artem, 2016. "Estimation of Hierarchical Archimedean Copulas as a Shortest Path Problem," Economics Letters, Elsevier, vol. 149(C), pages 131-134.
    11. Cossette, Hélène & Gadoury, Simon-Pierre & Marceau, Étienne & Mtalai, Itre, 2017. "Hierarchical Archimedean copulas through multivariate compound distributions," Insurance: Mathematics and Economics, Elsevier, vol. 76(C), pages 1-13.
    12. Zhu, Wenjun & Wang, Chou-Wen & Tan, Ken Seng, 2016. "Structure and estimation of Lévy subordinated hierarchical Archimedean copulas (LSHAC): Theory and empirical tests," Journal of Banking & Finance, Elsevier, vol. 69(C), pages 20-36.
    13. Uyttendaele, Nathan, 2018. "On the estimation of nested Archimedean copulas: a theoretical and an experimental comparison," LIDAM Reprints ISBA 2018029, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    14. Okhrin, Ostap & Okhrin, Yarema & Schmid, Wolfgang, 2013. "On the structure and estimation of hierarchical Archimedean copulas," Journal of Econometrics, Elsevier, vol. 173(2), pages 189-204.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Górecki, Jan & Hofert, Marius & Okhrin, Ostap, 2021. "Outer power transformations of hierarchical Archimedean copulas: Construction, sampling and estimation," Computational Statistics & Data Analysis, Elsevier, vol. 155(C).
    2. Górecki J. & Hofert M. & Holeňa M., 2017. "Kendall’s tau and agglomerative clustering for structure determination of hierarchical Archimedean copulas," Dependence Modeling, De Gruyter, vol. 5(1), pages 75-87, January.
    3. Chaoubi, Ihsan & Cossette, Hélène & Marceau, Etienne & Robert, Christian Y., 2021. "Hierarchical copulas with Archimedean blocks and asymmetric between-block pairs," Computational Statistics & Data Analysis, Elsevier, vol. 154(C).
    4. Cossette, Hélène & Gadoury, Simon-Pierre & Marceau, Étienne & Mtalai, Itre, 2017. "Hierarchical Archimedean copulas through multivariate compound distributions," Insurance: Mathematics and Economics, Elsevier, vol. 76(C), pages 1-13.
    5. Nathan Uyttendaele, 2018. "On the estimation of nested Archimedean copulas: a theoretical and an experimental comparison," Computational Statistics, Springer, vol. 33(2), pages 1047-1070, June.
    6. Grothe, Oliver & Hofert, Marius, 2015. "Construction and sampling of Archimedean and nested Archimedean Lévy copulas," Journal of Multivariate Analysis, Elsevier, vol. 138(C), pages 182-198.
    7. Segers, Johan & Uyttendaele, Nathan, 2014. "Nonparametric estimation of the tree structure of a nested Archimedean copula," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 190-204.
    8. Vettori, Sabrina & Huser, Raphael & Segers, Johan & Genton, Marc, 2017. "Bayesian Clustering and Dimension Reduction in Multivariate Extremes," LIDAM Discussion Papers ISBA 2017017, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    9. Ostap Okhrin & Anastasija Tetereva, 2017. "The Realized Hierarchical Archimedean Copula in Risk Modelling," Econometrics, MDPI, vol. 5(2), pages 1-31, June.
    10. Benjamin Poignard & Jean-David Fermanian, 2022. "The finite sample properties of sparse M-estimators with pseudo-observations," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(1), pages 1-31, February.
    11. Cossette, Hélène & Marceau, Etienne & Mtalai, Itre & Veilleux, Déry, 2018. "Dependent risk models with Archimedean copulas: A computational strategy based on common mixtures and applications," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 53-71.
    12. Uyttendaele, Nathan, 2016. "On the estimation of nested Archimedean copulas: A theoretical and an experimental comparison," LIDAM Discussion Papers ISBA 2016005, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    13. Zhu, Wenjun & Wang, Chou-Wen & Tan, Ken Seng, 2016. "Structure and estimation of Lévy subordinated hierarchical Archimedean copulas (LSHAC): Theory and empirical tests," Journal of Banking & Finance, Elsevier, vol. 69(C), pages 20-36.
    14. Di Bernardino Elena & Rullière Didier, 2013. "On certain transformations of Archimedean copulas: Application to the non-parametric estimation of their generators," Dependence Modeling, De Gruyter, vol. 1, pages 1-36, October.
    15. Benjamin Poignard & Jean-David Fermanian, 2019. "The finite sample properties of Sparse M-estimators with Pseudo-Observations," Working Papers 2019-01, Center for Research in Economics and Statistics.
    16. Bedoui, Rihab & Braiek, Sana & Guesmi, Khaled & Chevallier, Julien, 2019. "On the conditional dependence structure between oil, gold and USD exchange rates: Nested copula based GJR-GARCH model," Energy Economics, Elsevier, vol. 80(C), pages 876-889.
    17. Jörg Schwiebert, 2016. "Multinomial choice models based on Archimedean copulas," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 100(3), pages 333-354, July.
    18. David Blake & Marco Morales & Enrico Biffis & Yijia Lin & Andreas Milidonis, 2017. "Special Edition: Longevity 10 – The Tenth International Longevity Risk and Capital Markets Solutions Conference," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(S1), pages 515-532, April.
    19. Segers, Johan & Uyttendaele, Nathan, 2013. "Nonparametric estimation of the tree structure of a nested Archimedean copula," LIDAM Discussion Papers ISBA 2013009, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    20. Hofert, Marius & Mächler, Martin & McNeil, Alexander J., 2012. "Likelihood inference for Archimedean copulas in high dimensions under known margins," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 133-150.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:demode:v:7:y:2019:i:1:p:202-214:n:10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.