Advanced Search
MyIDEAS: Login

Market fraction hypothesis: A proposed test

Contents:

Author Info

  • Kampouridis, Michael
  • Chen, Shu-Heng
  • Tsang, Edward

Abstract

This paper presents and formalizes the Market Fraction Hypothesis (MFH), and also tests it under empirical datasets. The MFH states that the fraction of the different types of trading strategies that exist in a financial market changes (swings) over time. However, while such swinging has been observed in several agent-based financial models, a common assumption of these models is that the trading strategy types are static and pre-specified. In addition, although the above swinging observation has been made in the past, it has never been formalized into a concrete hypothesis. In this paper, we formalize the MFH by presenting its main constituents. Formalizing the MFH is very important, since it has not happened before and because it allows us to formulate tests that examine the plausibility of this hypothesis. Testing the hypothesis is also important, because it can give us valuable information about the dynamics of the market's microstructure. Our testing methodology follows a novel approach, where the trading strategies are neither static, nor pre-specified, as in the case in the traditional agent-based financial model literature. In order to do this, we use a new agent-based financial model which employs genetic programming as a rule-inference engine, and self-organizing maps as a clustering machine. We then run tests under 10 international markets and find that some parts of the hypothesis are not well-supported by the data. In fact, we find that while the swinging feature can be observed, it only happens among a few strategy types. Thus, even if many strategy types exist in a market, only a few of them can attract a high number of traders for long periods of time.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.sciencedirect.com/science/article/pii/S1057521911000706
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Elsevier in its journal International Review of Financial Analysis.

Volume (Year): 23 (2012)
Issue (Month): C ()
Pages: 41-54

as in new window
Handle: RePEc:eee:finana:v:23:y:2012:i:c:p:41-54

Contact details of provider:
Web page: http://www.elsevier.com/locate/inca/620166

Related research

Keywords: Market Fraction Hypothesis; Genetic Programming; Self-Organizing Feature Map; Time-Invariant Self-Organizing Feature Map; Agent-based financial model;

References

No references listed on IDEAS
You can help add them by filling out this form.

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:eee:finana:v:23:y:2012:i:c:p:41-54. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.