IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v93y2015ip2p2321-2336.html
   My bibliography  Save this article

Economic, energy, and environmental impacts of alcohol dehydration technology on biofuel production from brown algae

Author

Listed:
  • Fasahati, Peyman
  • Liu, J. Jay

Abstract

This study evaluates the impact of alcohol recovery technology on the economics, energy consumption, and environment of bioethanol production from brown algae. The process under consideration is the anaerobic digestion of brown algae to produce VFAs (volatile fatty acids), which are then hydrogenated to produce mixed alcohols. Three alternative processes, i.e., hybrid pervaporation/distillation (PV), hybrid vapor-permeation/distillation (VP), and classical molecular-sieves/distillation (classical), are considered for the dehydration and recovery of ethanol. The alternatives are analyzed in terms of product value (i.e., minimum ethanol selling price – MESP), capital costs, energy consumption, and carbon footprint. For a plant scale of 400,000 ton/year of dry brown algae, the MESPs for the PV (Pervaporation), VP (vapor permeation), and classical processes were calculated to be $1.06/gal, $1.08/gal, and $1.24/gal, respectively. Results show that the PV, VP, and classical processes have $2.0, $2.6, and $4.6 million/year utility costs, respectively, for the recovery of alcohols and produce 23.1, 30.2, and 62.2 kton CO2-eq/year greenhouse gases. Therefore, PV is more economical and environmentally friendly process, with lower MESP, CO2 emissions, and utility requirements. A sensitivity analysis indicates that the selling price of the heavier alcohols and biomass price have the highest impact on the economics of bioethanol production from brown algae.

Suggested Citation

  • Fasahati, Peyman & Liu, J. Jay, 2015. "Economic, energy, and environmental impacts of alcohol dehydration technology on biofuel production from brown algae," Energy, Elsevier, vol. 93(P2), pages 2321-2336.
  • Handle: RePEc:eee:energy:v:93:y:2015:i:p2:p:2321-2336
    DOI: 10.1016/j.energy.2015.10.123
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215015017
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.10.123?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Azadi, Pooya & Brownbridge, George & Mosbach, Sebastian & Smallbone, Andrew & Bhave, Amit & Inderwildi, Oliver & Kraft, Markus, 2014. "The carbon footprint and non-renewable energy demand of algae-derived biodiesel," Applied Energy, Elsevier, vol. 113(C), pages 1632-1644.
    2. Tarwadi, S.J. & Chauhan, V.D., 1987. "Seaweed biomass as a source of energy," Energy, Elsevier, vol. 12(5), pages 375-378.
    3. Franz, Johannes & Maas, Pascal & Scherer, Viktor, 2014. "Economic evaluation of pre-combustion CO2-capture in IGCC power plants by porous ceramic membranes," Applied Energy, Elsevier, vol. 130(C), pages 532-542.
    4. Gurung, Anup & Van Ginkel, Steven W. & Kang, Woo-Chang & Qambrani, Naveed Ahmed & Oh, Sang-Eun, 2012. "Evaluation of marine biomass as a source of methane in batch tests: A lab-scale study," Energy, Elsevier, vol. 43(1), pages 396-401.
    5. Villanueva Perales, A.L. & Reyes Valle, C. & Ollero, P. & Gómez-Barea, A., 2011. "Technoeconomic assessment of ethanol production via thermochemical conversion of biomass by entrained flow gasification," Energy, Elsevier, vol. 36(7), pages 4097-4108.
    6. Cardona Alzate, C.A. & Sánchez Toro, O.J., 2006. "Energy consumption analysis of integrated flowsheets for production of fuel ethanol from lignocellulosic biomass," Energy, Elsevier, vol. 31(13), pages 2447-2459.
    7. Fasahati, Peyman & Woo, Hee Chul & Liu, J. Jay, 2015. "Industrial-scale bioethanol production from brown algae: Effects of pretreatment processes on plant economics," Applied Energy, Elsevier, vol. 139(C), pages 175-187.
    8. Luis, P. & Amelio, A. & Vreysen, S. & Calabro, V. & Van der Bruggen, B., 2014. "Simulation and environmental evaluation of process design: Distillation vs. hybrid distillation–pervaporation for methanol/tetrahydrofuran separation," Applied Energy, Elsevier, vol. 113(C), pages 565-575.
    9. Timilsina, Govinda R. & Shrestha, Ashish, 2011. "How much hope should we have for biofuels?," Energy, Elsevier, vol. 36(4), pages 2055-2069.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shokrkar, Hanieh & Ebrahimi, Sirous, 2018. "Evaluation of different enzymatic treatment procedures on sugar extraction from microalgal biomass, experimental and kinetic study," Energy, Elsevier, vol. 148(C), pages 258-268.
    2. Ng, Rex T.L. & Fasahati, Peyman & Huang, Kefeng & Maravelias, Christos T., 2019. "Utilizing stillage in the biorefinery: Economic, technological and energetic analysis," Applied Energy, Elsevier, vol. 241(C), pages 491-503.
    3. Liu, J. Jay & Dickson, Rofice & Niaz, Haider & Van Hal, Jaap W. & Dijkstra, J.W. & Fasahati, Peyman, 2022. "Production of fuels and chemicals from macroalgal biomass: Current status, potentials, challenges, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    4. Yi, Qun & Gong, Min-Hui & Huang, Yi & Feng, Jie & Hao, Yan-Hong & Zhang, Ji-Long & Li, Wen-Ying, 2016. "Process development of coke oven gas to methanol integrated with CO2 recycle for satisfactory techno-economic performance," Energy, Elsevier, vol. 112(C), pages 618-628.
    5. Zhang, Hongru & Wang, Shuai & Tang, Jiaxuan & Li, Ningning & Li, Yanan & Cui, Peizhe & Wang, Yinglong & Zheng, Shiqing & Zhu, Zhaoyou & Ma, Yixin, 2021. "Multi-objective optimization and control strategy for extractive distillation with dividing-wall column/pervaporation for separation of ternary azeotropes based on mechanism analysis," Energy, Elsevier, vol. 229(C).
    6. Shokrkar, Hanieh & Keighobadi, Amin, 2022. "Effect of fluid hydrodynamic situations on enzymatic hydrolysis of mixed microalgae: Experimental study and simulation," Energy, Elsevier, vol. 241(C).
    7. Hassan, Muhammad & Umar, Muhammad & Ding, Weimin & Mehryar, Esmaeil & Zhao, Chao, 2017. "Methane enhancement through co-digestion of chicken manure and oxidative cleaved wheat straw: Stability performance and kinetic modeling perspectives," Energy, Elsevier, vol. 141(C), pages 2314-2320.
    8. Fasahati, P. & Dickson, R. & Saffron, C.M. & Woo, H.C. & Liu, J. Jay, 2022. "Seaweeds as a sustainable source of bioenergy: Techno-economic and life cycle analyses of its biochemical conversion pathways," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    9. Khalid, Azqa & Aslam, Muhammad & Qyyum, Muhammad Abdul & Faisal, Abrar & Khan, Asim Laeeq & Ahmed, Faisal & Lee, Moonyong & Kim, Jeonghwan & Jang, Nulee & Chang, In Seop & Bazmi, Aqeel Ahmed & Yasin, , 2019. "Membrane separation processes for dehydration of bioethanol from fermentation broths: Recent developments, challenges, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 427-443.
    10. Zeb, Hassan & Choi, Jaeyeon & Kim, Yunje & Kim, Jaehoon, 2017. "A new role of supercritical ethanol in macroalgae liquefaction (Saccharina japonica): Understanding ethanol participation, yield, and energy efficiency," Energy, Elsevier, vol. 118(C), pages 116-126.
    11. Gan, Yong Yang & Chen, Wei-Hsin & Ong, Hwai Chyuan & Sheen, Herng-Kuang & Chang, Jo-Shu & Hsieh, Tzu-Hsien & Ling, Tau Chuan, 2020. "Effects of dry and wet torrefaction pretreatment on microalgae pyrolysis analyzed by TG-FTIR and double-shot Py-GC/MS," Energy, Elsevier, vol. 210(C).
    12. Kouhgardi, Esmaeil & Zendehboudi, Sohrab & Mohammadzadeh, Omid & Lohi, Ali & Chatzis, Ioannis, 2023. "Current status and future prospects of biofuel production from brown algae in North America: Progress and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    13. Jambo, Siti Azmah & Abdulla, Rahmath & Mohd Azhar, Siti Hajar & Marbawi, Hartinie & Gansau, Jualang Azlan & Ravindra, Pogaku, 2016. "A review on third generation bioethanol feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 756-769.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thompson, T.M. & Young, B.R. & Baroutian, S., 2020. "Pelagic Sargassum for energy and fertiliser production in the Caribbean: A case study on Barbados," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    2. Allen, Eoin & Wall, David M. & Herrmann, Christiane & Xia, Ao & Murphy, Jerry D., 2015. "What is the gross energy yield of third generation gaseous biofuel sourced from seaweed?," Energy, Elsevier, vol. 81(C), pages 352-360.
    3. Duarte, Alexandra E. & Sarache, William A. & Costa, Yasel J., 2014. "A facility-location model for biofuel plants: Applications in the Colombian context," Energy, Elsevier, vol. 72(C), pages 476-483.
    4. Kou, Nannan & Zhao, Fu, 2011. "Techno-economical analysis of a thermo-chemical biofuel plant with feedstock and product flexibility under external disturbances," Energy, Elsevier, vol. 36(12), pages 6745-6752.
    5. Tedesco, Silvia & Mac Lochlainn, Dubhaltach & Olabi, Abdul Ghani, 2014. "Particle size reduction optimization of Laminaria spp. biomass for enhanced methane production," Energy, Elsevier, vol. 76(C), pages 857-862.
    6. Kouhgardi, Esmaeil & Zendehboudi, Sohrab & Mohammadzadeh, Omid & Lohi, Ali & Chatzis, Ioannis, 2023. "Current status and future prospects of biofuel production from brown algae in North America: Progress and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    7. Atsonios, Konstantinos & Kougioumtzis, Michael-Alexander & D. Panopoulos, Kyriakos & Kakaras, Emmanuel, 2015. "Alternative thermochemical routes for aviation biofuels via alcohols synthesis: Process modeling, techno-economic assessment and comparison," Applied Energy, Elsevier, vol. 138(C), pages 346-366.
    8. Zhang, Xiaolei & Yan, Song & Tyagi, Rajeshwar D. & Surampalli, RaoY. & Valéro, Jose R., 2014. "Wastewater sludge as raw material for microbial oils production," Applied Energy, Elsevier, vol. 135(C), pages 192-201.
    9. Liu, Guangmin & Qiao, Lina & Zhang, Hong & Zhao, Dan & Su, Xudong, 2014. "The effects of illumination factors on the growth and HCO3− fixation of microalgae in an experiment culture system," Energy, Elsevier, vol. 78(C), pages 40-47.
    10. Wang, Ze & Lin, Weigang & Song, Wenli & Wu, Xuexing, 2012. "Pyrolysis of the lignocellulose fermentation residue by fixed-bed micro reactor," Energy, Elsevier, vol. 43(1), pages 301-305.
    11. Khalili-Garakani, Amirhossein & Ivakpour, Javad & Kasiri, Norollah, 2016. "Evolutionary synthesis of optimum light ends recovery unit with exergy analysis application," Applied Energy, Elsevier, vol. 168(C), pages 507-522.
    12. Holmatov, B. & Hoekstra, A.Y. & Krol, M.S., 2019. "Land, water and carbon footprints of circular bioenergy production systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 224-235.
    13. Vladimir Heredia & Olivier Gonçalves & Luc Marchal & Jeremy Pruvost, 2021. "Producing Energy-Rich Microalgae Biomass for Liquid Biofuels: Influence of Strain Selection and Culture Conditions," Energies, MDPI, vol. 14(5), pages 1-15, February.
    14. Tsita, Katerina G. & Pilavachi, Petros A., 2012. "Evaluation of alternative fuels for the Greek road transport sector using the analytic hierarchy process," Energy Policy, Elsevier, vol. 48(C), pages 677-686.
    15. Thomassen, Gwenny & Van Dael, Miet & Lemmens, Bert & Van Passel, Steven, 2017. "A review of the sustainability of algal-based biorefineries: Towards an integrated assessment framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 876-887.
    16. Kato, Karina Yoshie Martins & Flexor, Georges Gérard & Recalde, Marína Yesica, 2012. "The biodiesel market and public policy: a comparative analysis of Argentina and Brazil," Revista CEPAL, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL), December.
    17. Ribeiro, Barbara E. & Quintanilla, Miguel A., 2015. "Transitions in biofuel technologies: An appraisal of the social impacts of cellulosic ethanol using the Delphi method," Technological Forecasting and Social Change, Elsevier, vol. 92(C), pages 53-68.
    18. Melts, Indrek & Heinsoo, Katrin & Nurk, Liina & Pärn, Linnar, 2013. "Comparison of two different bioenergy production options from late harvested biomass of Estonian semi-natural grasslands," Energy, Elsevier, vol. 61(C), pages 6-12.
    19. Poder, Thomas G. & He, Jie, 2017. "Willingness to pay for a cleaner car: The case of car pollution in Quebec and France," Energy, Elsevier, vol. 130(C), pages 48-54.
    20. Nimmanterdwong, Prathana & Chalermsinsuwan, Benjapon & Piumsomboon, Pornpote, 2017. "Emergy analysis of three alternative carbon dioxide capture processes," Energy, Elsevier, vol. 128(C), pages 101-108.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:93:y:2015:i:p2:p:2321-2336. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.