IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v77y2014icp57-65.html
   My bibliography  Save this article

Economical optimization of energy-efficient timber buildings: Case study for single family timber house in Slovenia

Author

Listed:
  • Soršak, Marko
  • Leskovar, Vesna Žegarac
  • Premrov, Miroslav
  • Goričanec, Darko
  • Pšunder, Igor

Abstract

The paper presents an approach in the determination of the most economically efficient building from the viewpoint of the costs of envelope’s composition, the present value of heating costs and the costs incurred in fitting out the boiler room (hereinafter: the costs of the boiler room). The process of determination starts with the selection of a certain building in the phase of project engineering, next different combinations of envelope composition are numerically analysed and finally the optimal solution or approximation of that solution is defined on the basis of the analysed results. The approach is presented on the simulation case of a single-storey house. The result of the study is presented by a set of parameters showing different costs of building envelope from the point of initial investment for a selected energy demand of building. In the second step we calculated the present value costs of heating and compared them with the additional cost of initial investment in the envelope and additional investment in the building’s boiler room in order to determine which combination of envelope and heating system is the most economically efficient.

Suggested Citation

  • Soršak, Marko & Leskovar, Vesna Žegarac & Premrov, Miroslav & Goričanec, Darko & Pšunder, Igor, 2014. "Economical optimization of energy-efficient timber buildings: Case study for single family timber house in Slovenia," Energy, Elsevier, vol. 77(C), pages 57-65.
  • Handle: RePEc:eee:energy:v:77:y:2014:i:c:p:57-65
    DOI: 10.1016/j.energy.2014.04.081
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214004940
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.04.081?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dalla Rosa, A. & Christensen, J.E., 2011. "Low-energy district heating in energy-efficient building areas," Energy, Elsevier, vol. 36(12), pages 6890-6899.
    2. Mavromatidis, Lazaros Elias & Marsault, Xavier & Lequay, Hervé, 2014. "Daylight factor estimation at an early design stage to reduce buildings' energy consumption due to artificial lighting: A numerical approach based on Doehlert and Box–Behnken designs," Energy, Elsevier, vol. 65(C), pages 488-502.
    3. Petersen, Steffen & Svendsen, Svend, 2012. "Method for component-based economical optimisation for use in design of new low-energy buildings," Renewable Energy, Elsevier, vol. 38(1), pages 173-180.
    4. Persson, Urban & Werner, Sven, 2011. "Heat distribution and the future competitiveness of district heating," Applied Energy, Elsevier, vol. 88(3), pages 568-576, March.
    5. Audenaert, A. & De Cleyn, S.H. & Vankerckhove, B., 2008. "Economic analysis of passive houses and low-energy houses compared with standard houses," Energy Policy, Elsevier, vol. 36(1), pages 47-55, January.
    6. Liu, Long & Zhao, Jing & Liu, Xin & Wang, Zhaoxia, 2014. "Energy consumption comparison analysis of high energy efficiency office buildings in typical climate zones of China and U.S. based on correction model," Energy, Elsevier, vol. 65(C), pages 221-232.
    7. Li, Danny H.W. & Yang, Liu & Lam, Joseph C., 2013. "Zero energy buildings and sustainable development implications – A review," Energy, Elsevier, vol. 54(C), pages 1-10.
    8. Gieseler, U.D.J. & Heidt, F.D. & Bier, W., 2004. "Evaluation of the cost efficiency of an energy efficient building," Renewable Energy, Elsevier, vol. 29(3), pages 369-376.
    9. Alberg Østergaard, Poul & Mathiesen, Brian Vad & Möller, Bernd & Lund, Henrik, 2010. "A renewable energy scenario for Aalborg Municipality based on low-temperature geothermal heat, wind power and biomass," Energy, Elsevier, vol. 35(12), pages 4892-4901.
    10. Clift, Roland, 2007. "Climate change and energy policy: The importance of sustainability arguments," Energy, Elsevier, vol. 32(4), pages 262-268.
    11. Geng, Jiang-Bo & Ji, Qiang, 2014. "Multi-perspective analysis of China's energy supply security," Energy, Elsevier, vol. 64(C), pages 541-550.
    12. Jakob, Martin, 2006. "Marginal costs and co-benefits of energy efficiency investments: The case of the Swiss residential sector," Energy Policy, Elsevier, vol. 34(2), pages 172-187, January.
    13. Hallock, John L. & Wu, Wei & Hall, Charles A.S. & Jefferson, Michael, 2014. "Forecasting the limits to the availability and diversity of global conventional oil supply: Validation," Energy, Elsevier, vol. 64(C), pages 130-153.
    14. Schnieders, Jurgen & Hermelink, Andreas, 2006. "CEPHEUS results: measurements and occupants' satisfaction provide evidence for Passive Houses being an option for sustainable building," Energy Policy, Elsevier, vol. 34(2), pages 151-171, January.
    15. Paul Joseph & Svetlana Tretsiakova-McNally, 2010. "Sustainable Non-Metallic Building Materials," Sustainability, MDPI, vol. 2(2), pages 1-28, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Safamehr, Hossein & Rahimi-Kian, Ashkan, 2015. "A cost-efficient and reliable energy management of a micro-grid using intelligent demand-response program," Energy, Elsevier, vol. 91(C), pages 283-293.
    2. Premrov, Miroslav & Žegarac Leskovar, Vesna & Mihalič, Klara, 2016. "Influence of the building shape on the energy performance of timber-glass buildings in different climatic conditions," Energy, Elsevier, vol. 108(C), pages 201-211.
    3. Kočí, Václav & Kočí, Jan & Maděra, Jiří & Černý, Robert, 2016. "Contribution of waste products in single-layer ceramic building envelopes to overall energy savings," Energy, Elsevier, vol. 111(C), pages 947-955.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Timmons, David & Konstantinidis, Charalampos & Shapiro, Andrew M. & Wilson, Alex, 2016. "Decarbonizing residential building energy: A cost-effective approach," Energy Policy, Elsevier, vol. 92(C), pages 382-392.
    2. Michael-Allan Millar & Bruce Elrick & Greg Jones & Zhibin Yu & Neil M. Burnside, 2020. "Roadblocks to Low Temperature District Heating," Energies, MDPI, vol. 13(22), pages 1-21, November.
    3. Jie, Pengfei & Kong, Xiangfei & Rong, Xian & Xie, Shangqun, 2016. "Selecting the optimum pressure drop per unit length of district heating piping network based on operating strategies," Applied Energy, Elsevier, vol. 177(C), pages 341-353.
    4. Dalla Rosa, A. & Boulter, R. & Church, K. & Svendsen, S., 2012. "District heating (DH) network design and operation toward a system-wide methodology for optimizing renewable energy solutions (SMORES) in Canada: A case study," Energy, Elsevier, vol. 45(1), pages 960-974.
    5. Harrestrup, M. & Svendsen, S., 2014. "Heat planning for fossil-fuel-free district heating areas with extensive end-use heat savings: A case study of the Copenhagen district heating area in Denmark," Energy Policy, Elsevier, vol. 68(C), pages 294-305.
    6. Averfalk, Helge & Werner, Sven, 2018. "Novel low temperature heat distribution technology," Energy, Elsevier, vol. 145(C), pages 526-539.
    7. Nielsen, Steffen, 2014. "A geographic method for high resolution spatial heat planning," Energy, Elsevier, vol. 67(C), pages 351-362.
    8. Persson, Urban & Wiechers, Eva & Möller, Bernd & Werner, Sven, 2019. "Heat Roadmap Europe: Heat distribution costs," Energy, Elsevier, vol. 176(C), pages 604-622.
    9. Brand, Marek & Thorsen, Jan Eric & Svendsen, Svend, 2012. "Numerical modelling and experimental measurements for a low-temperature district heating substation for instantaneous preparation of DHW with respect to service pipes," Energy, Elsevier, vol. 41(1), pages 392-400.
    10. Rämä, Miika & Wahlroos, Mikko, 2018. "Introduction of new decentralised renewable heat supply in an existing district heating system," Energy, Elsevier, vol. 154(C), pages 68-79.
    11. Jiang, X.S. & Jing, Z.X. & Li, Y.Z. & Wu, Q.H. & Tang, W.H., 2014. "Modelling and operation optimization of an integrated energy based direct district water-heating system," Energy, Elsevier, vol. 64(C), pages 375-388.
    12. Mathiesen, B.V. & Lund, H. & Connolly, D. & Wenzel, H. & Østergaard, P.A. & Möller, B. & Nielsen, S. & Ridjan, I. & Karnøe, P. & Sperling, K. & Hvelplund, F.K., 2015. "Smart Energy Systems for coherent 100% renewable energy and transport solutions," Applied Energy, Elsevier, vol. 145(C), pages 139-154.
    13. Möller, Bernd & Wiechers, Eva & Persson, Urban & Grundahl, Lars & Lund, Rasmus Søgaard & Mathiesen, Brian Vad, 2019. "Heat Roadmap Europe: Towards EU-Wide, local heat supply strategies," Energy, Elsevier, vol. 177(C), pages 554-564.
    14. Aydin, Yusuf Cihat & Mirzaei, Parham A. & Akhavannasab, Sanam, 2019. "On the relationship between building energy efficiency, aesthetic features and marketability: Toward a novel policy for energy demand reduction," Energy Policy, Elsevier, vol. 128(C), pages 593-606.
    15. Baldvinsson, Ivar & Nakata, Toshihiko, 2014. "A comparative exergy and exergoeconomic analysis of a residential heat supply system paradigm of Japan and local source based district heating system using SPECO (specific exergy cost) method," Energy, Elsevier, vol. 74(C), pages 537-554.
    16. Kylili, Angeliki & Ilic, Milos & Fokaides, Paris A., 2017. "Whole-building Life Cycle Assessment (LCA) of a passive house of the sub-tropical climatic zone," Resources, Conservation & Recycling, Elsevier, vol. 116(C), pages 169-177.
    17. Ommen, Torben & Thorsen, Jan Eric & Markussen, Wiebke Brix & Elmegaard, Brian, 2017. "Performance of ultra low temperature district heating systems with utility plant and booster heat pumps," Energy, Elsevier, vol. 137(C), pages 544-555.
    18. Georges, L. & Massart, C. & Van Moeseke, G. & De Herde, A., 2012. "Environmental and economic performance of heating systems for energy-efficient dwellings: Case of passive and low-energy single-family houses," Energy Policy, Elsevier, vol. 40(C), pages 452-464.
    19. Jimin Kim & Taehoon Hong & Myeongsoo Chae & Choongwan Koo & Jaemin Jeong, 2015. "An Environmental and Economic Assessment for Selecting the Optimal Ground Heat Exchanger by Considering the Entering Water Temperature," Energies, MDPI, vol. 8(8), pages 1-25, July.
    20. Lizana, Jesús & Ortiz, Carlos & Soltero, Víctor M. & Chacartegui, Ricardo, 2017. "District heating systems based on low-carbon energy technologies in Mediterranean areas," Energy, Elsevier, vol. 120(C), pages 397-416.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:77:y:2014:i:c:p:57-65. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.