IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v67y2014icp351-362.html
   My bibliography  Save this article

A geographic method for high resolution spatial heat planning

Author

Listed:
  • Nielsen, Steffen

Abstract

In many countries, DH (district heating) covers a large share of the heat market. In these countries, the best locations for DH systems have already been found. Therefore, the challenge for these countries is to find expansion potentials for existing DH. The expansion to less ideal areas requires more detailed modelling that takes the geographic placement of buildings and the differences among DH systems into account.

Suggested Citation

  • Nielsen, Steffen, 2014. "A geographic method for high resolution spatial heat planning," Energy, Elsevier, vol. 67(C), pages 351-362.
  • Handle: RePEc:eee:energy:v:67:y:2014:i:c:p:351-362
    DOI: 10.1016/j.energy.2013.12.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213010682
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.12.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Münster, Marie & Morthorst, Poul Erik & Larsen, Helge V. & Bregnbæk, Lars & Werling, Jesper & Lindboe, Hans Henrik & Ravn, Hans, 2012. "The role of district heating in the future Danish energy system," Energy, Elsevier, vol. 48(1), pages 47-55.
    2. Tol, H.İ. & Svendsen, S., 2012. "Improving the dimensioning of piping networks and network layouts in low-energy district heating systems connected to low-energy buildings: A case study in Roskilde, Denmark," Energy, Elsevier, vol. 38(1), pages 276-290.
    3. Persson, Urban & Werner, Sven, 2011. "Heat distribution and the future competitiveness of district heating," Applied Energy, Elsevier, vol. 88(3), pages 568-576, March.
    4. Möller, Bernd & Lund, Henrik, 2010. "Conversion of individual natural gas to district heating: Geographical studies of supply costs and consequences for the Danish energy system," Applied Energy, Elsevier, vol. 87(6), pages 1846-1857, June.
    5. Alberg Østergaard, Poul & Mathiesen, Brian Vad & Möller, Bernd & Lund, Henrik, 2010. "A renewable energy scenario for Aalborg Municipality based on low-temperature geothermal heat, wind power and biomass," Energy, Elsevier, vol. 35(12), pages 4892-4901.
    6. Nielsen, Steffen & Möller, Bernd, 2013. "GIS based analysis of future district heating potential in Denmark," Energy, Elsevier, vol. 57(C), pages 458-468.
    7. Sperling, Karl & Möller, Bernd, 2012. "End-use energy savings and district heating expansion in a local renewable energy system – A short-term perspective," Applied Energy, Elsevier, vol. 92(C), pages 831-842.
    8. Nilsson, Stefan Forsaeus & Reidhav, Charlotte & Lygnerud, Kristina & Werner, Sven, 2008. "Sparse district-heating in Sweden," Applied Energy, Elsevier, vol. 85(7), pages 555-564, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sayegh, M.A. & Danielewicz, J. & Nannou, T. & Miniewicz, M. & Jadwiszczak, P. & Piekarska, K. & Jouhara, H., 2017. "Trends of European research and development in district heating technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1183-1192.
    2. Aunedi, Marko & Pantaleo, Antonio Marco & Kuriyan, Kamal & Strbac, Goran & Shah, Nilay, 2020. "Modelling of national and local interactions between heat and electricity networks in low-carbon energy systems," Applied Energy, Elsevier, vol. 276(C).
    3. Stegnar, Gašper & Staničić, D. & Česen, M. & Čižman, J. & Pestotnik, S. & Prestor, J. & Urbančič, A. & Merše, S., 2019. "A framework for assessing the technical and economic potential of shallow geothermal energy in individual and district heating systems: A case study of Slovenia," Energy, Elsevier, vol. 180(C), pages 405-420.
    4. Büchele, Richard & Kranzl, Lukas & Hummel, Marcus, 2019. "Integrated strategic heating and cooling planning on regional level for the case of Brasov," Energy, Elsevier, vol. 171(C), pages 475-484.
    5. Grundahl, Lars & Nielsen, Steffen & Lund, Henrik & Möller, Bernd, 2016. "Comparison of district heating expansion potential based on consumer-economy or socio-economy," Energy, Elsevier, vol. 115(P3), pages 1771-1778.
    6. Wakui, Tetsuya & Hashiguchi, Moe & Yokoyama, Ryohei, 2021. "Structural design of distributed energy networks by a hierarchical combination of variable- and constraint-based decomposition methods," Energy, Elsevier, vol. 224(C).
    7. Lund, Henrik & Østergaard, Poul Alberg & Chang, Miguel & Werner, Sven & Svendsen, Svend & Sorknæs, Peter & Thorsen, Jan Eric & Hvelplund, Frede & Mortensen, Bent Ole Gram & Mathiesen, Brian Vad & Boje, 2018. "The status of 4th generation district heating: Research and results," Energy, Elsevier, vol. 164(C), pages 147-159.
    8. Steffen Nielsen & Lars Grundahl, 2018. "District Heating Expansion Potential with Low-Temperature and End-Use Heat Savings," Energies, MDPI, vol. 11(2), pages 1-17, January.
    9. Weinand, Jann Michael & Kleinebrahm, Max & McKenna, Russell & Mainzer, Kai & Fichtner, Wolf, 2019. "Developing a combinatorial optimisation approach to design district heating networks based on deep geothermal energy," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    10. Hyunkyo Yu & Erik O. Ahlgren, 2023. "Enhancing Urban Heating Systems Planning through Spatially Explicit Participatory Modeling," Energies, MDPI, vol. 16(11), pages 1-26, May.
    11. Leurent, Martin, 2019. "Analysis of the district heating potential in French regions using a geographic information system," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    12. Meha, Drilon & Novosel, Tomislav & Duić, Neven, 2020. "Bottom-up and top-down heat demand mapping methods for small municipalities, case Gllogoc," Energy, Elsevier, vol. 199(C).
    13. Malte Schwanebeck & Marcus Krüger & Rainer Duttmann, 2021. "Improving GIS-Based Heat Demand Modelling and Mapping for Residential Buildings with Census Data Sets at Regional and Sub-Regional Scales," Energies, MDPI, vol. 14(4), pages 1-18, February.
    14. Simeoni, Patrizia & Ciotti, Gellio & Cottes, Mattia & Meneghetti, Antonella, 2019. "Integrating industrial waste heat recovery into sustainable smart energy systems," Energy, Elsevier, vol. 175(C), pages 941-951.
    15. Jalil-Vega, Francisca & Hawkes, Adam D., 2018. "The effect of spatial resolution on outcomes from energy systems modelling of heat decarbonisation," Energy, Elsevier, vol. 155(C), pages 339-350.
    16. Meha, Drilon & Dragusha, Bedri & Thakur, Jagruti & Novosel, Tomislav & Duić, Neven, 2021. "A novel spatial based approach for estimation of space heating demand saving potential and CO2 emissions reduction in urban areas," Energy, Elsevier, vol. 225(C).
    17. Nielsen, Steffen & Østergaard, Poul Alberg & Sperling, Karl, 2023. "Renewable energy transition, transmission system impacts and regional development – a mismatch between national planning and local development," Energy, Elsevier, vol. 278(PA).
    18. Morvaj, Boran & Evins, Ralph & Carmeliet, Jan, 2017. "Decarbonizing the electricity grid: The impact on urban energy systems, distribution grids and district heating potential," Applied Energy, Elsevier, vol. 191(C), pages 125-140.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lund, Henrik & Werner, Sven & Wiltshire, Robin & Svendsen, Svend & Thorsen, Jan Eric & Hvelplund, Frede & Mathiesen, Brian Vad, 2014. "4th Generation District Heating (4GDH)," Energy, Elsevier, vol. 68(C), pages 1-11.
    2. Nielsen, Steffen & Möller, Bernd, 2013. "GIS based analysis of future district heating potential in Denmark," Energy, Elsevier, vol. 57(C), pages 458-468.
    3. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    4. Persson, Urban & Wiechers, Eva & Möller, Bernd & Werner, Sven, 2019. "Heat Roadmap Europe: Heat distribution costs," Energy, Elsevier, vol. 176(C), pages 604-622.
    5. Karlsson, Kenneth B. & Petrović, Stefan N. & Næraa, Rikke, 2016. "Heat supply planning for the ecological housing community Munksøgård," Energy, Elsevier, vol. 115(P3), pages 1733-1747.
    6. Mathiesen, B.V. & Lund, H. & Connolly, D. & Wenzel, H. & Østergaard, P.A. & Möller, B. & Nielsen, S. & Ridjan, I. & Karnøe, P. & Sperling, K. & Hvelplund, F.K., 2015. "Smart Energy Systems for coherent 100% renewable energy and transport solutions," Applied Energy, Elsevier, vol. 145(C), pages 139-154.
    7. Lake, Andrew & Rezaie, Behanz & Beyerlein, Steven, 2017. "Review of district heating and cooling systems for a sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 417-425.
    8. Persson, U. & Möller, B. & Werner, S., 2014. "Heat Roadmap Europe: Identifying strategic heat synergy regions," Energy Policy, Elsevier, vol. 74(C), pages 663-681.
    9. Möller, Bernd & Wiechers, Eva & Persson, Urban & Grundahl, Lars & Connolly, David, 2018. "Heat Roadmap Europe: Identifying local heat demand and supply areas with a European thermal atlas," Energy, Elsevier, vol. 158(C), pages 281-292.
    10. Kılkış, Şiir, 2015. "Exergy transition planning for net-zero districts," Energy, Elsevier, vol. 92(P3), pages 515-531.
    11. Bühler, Fabian & Petrović, Stefan & Karlsson, Kenneth & Elmegaard, Brian, 2017. "Industrial excess heat for district heating in Denmark," Applied Energy, Elsevier, vol. 205(C), pages 991-1001.
    12. Oropeza-Perez, Ivan & Østergaard, Poul Alberg, 2014. "Potential of natural ventilation in temperate countries – A case study of Denmark," Applied Energy, Elsevier, vol. 114(C), pages 520-530.
    13. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    14. Yannan Gao & San Sampattavanija, 2022. "Air Quality and Winter Heating: Some Evidence from China," International Journal of Energy Economics and Policy, Econjournals, vol. 12(4), pages 455-469, July.
    15. Unternährer, Jérémy & Moret, Stefano & Joost, Stéphane & Maréchal, François, 2017. "Spatial clustering for district heating integration in urban energy systems: Application to geothermal energy," Applied Energy, Elsevier, vol. 190(C), pages 749-763.
    16. Hansen, C.H. & Gudmundsson, O. & Detlefsen, N., 2019. "Cost efficiency of district heating for low energy buildings of the future," Energy, Elsevier, vol. 177(C), pages 77-86.
    17. Delangle, Axelle & Lambert, Romain S.C. & Shah, Nilay & Acha, Salvador & Markides, Christos N., 2017. "Modelling and optimising the marginal expansion of an existing district heating network," Energy, Elsevier, vol. 140(P1), pages 209-223.
    18. Oropeza-Perez, Ivan & Østergaard, Poul Alberg, 2014. "The influence of an estimated energy saving due to natural ventilation on the Mexican energy system," Energy, Elsevier, vol. 64(C), pages 1080-1091.
    19. Siddique, Muhammad Bilal & Nielsen, Per Sieverts & Rosendal, Mathias Berg & Jensen, Ida Græsted & Keles, Dogan, 2023. "Impacts of earlier natural gas phase-out & heat-saving policies on district heating and the energy system," Energy Policy, Elsevier, vol. 174(C).
    20. Jie, Pengfei & Kong, Xiangfei & Rong, Xian & Xie, Shangqun, 2016. "Selecting the optimum pressure drop per unit length of district heating piping network based on operating strategies," Applied Energy, Elsevier, vol. 177(C), pages 341-353.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:67:y:2014:i:c:p:351-362. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.