IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v68y2014icp896-909.html
   My bibliography  Save this article

Effect of heat transfer structures on thermoeconomic performance of solid thermal storage

Author

Listed:
  • Lizarraga-Garcia, Enrique
  • Mitsos, Alexander

Abstract

The performance of a regenerative solid TES (thermal energy storage) system with enhancement heat transfer structures is analyzed. Thermal energy is transferred from a hot heat transfer fluid to the storage unit core elements during charge, and from the core elements to the cold heat transfer fluid during discharge. Herein, concrete as the solid storage material, nitrate solar salt as the heat transfer fluid, and aluminum plates as the heat transfer structures are considered. The discharge process from uniform initial temperature is studied with different configurations (pure concrete and concrete enhanced by transfer structures), operation strategies (laminar versus turbulent flow regimes), and dimensions. The results show a significant decrease in the cost of the TES system when heat transfer structures are added, as well as higher discharge efficiency and lower discharge time period. The amount of solar salt needed for this configuration is also decreased by the use of the heat transfer structures and is five time less than that of a two-tank system.

Suggested Citation

  • Lizarraga-Garcia, Enrique & Mitsos, Alexander, 2014. "Effect of heat transfer structures on thermoeconomic performance of solid thermal storage," Energy, Elsevier, vol. 68(C), pages 896-909.
  • Handle: RePEc:eee:energy:v:68:y:2014:i:c:p:896-909
    DOI: 10.1016/j.energy.2014.02.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214001480
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.02.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Medrano, Marc & Gil, Antoni & Martorell, Ingrid & Potau, Xavi & Cabeza, Luisa F., 2010. "State of the art on high-temperature thermal energy storage for power generation. Part 2--Case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 56-72, January.
    2. Mawire, A. & McPherson, M., 2008. "Experimental characterisation of a thermal energy storage system using temperature and power controlled charging," Renewable Energy, Elsevier, vol. 33(4), pages 682-693.
    3. Mawire, A. & McPherson, M. & van den Heetkamp, R.R.J. & Taole, S.H., 2010. "Experimental volumetric heat transfer characteristics between oil and glass pebbles in a small glass tube storage," Energy, Elsevier, vol. 35(3), pages 1256-1263.
    4. Fricker, H.W., 2004. "Regenerative thermal storage in atmospheric air system solar power plants," Energy, Elsevier, vol. 29(5), pages 871-881.
    5. Liu, Ming & Saman, Wasim & Bruno, Frank, 2012. "Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2118-2132.
    6. Kearney, D. & Kelly, B. & Herrmann, U. & Cable, R. & Pacheco, J. & Mahoney, R. & Price, H. & Blake, D. & Nava, P. & Potrovitza, N., 2004. "Engineering aspects of a molten salt heat transfer fluid in a trough solar field," Energy, Elsevier, vol. 29(5), pages 861-870.
    7. Wang, K.Y. & West, R.E. & Kreith, F. & Lynn, P., 1985. "High-temperature sensible-heat storage options," Energy, Elsevier, vol. 10(10), pages 1165-1175.
    8. Mawire, A. & McPherson, M. & Heetkamp, R.R.J. van den & Mlatho, S.J.P., 2009. "Simulated performance of storage materials for pebble bed thermal energy storage (TES) systems," Applied Energy, Elsevier, vol. 86(7-8), pages 1246-1252, July.
    9. Lizarraga-Garcia, Enrique & Ghobeity, Amin & Totten, Mark & Mitsos, Alexander, 2013. "Optimal operation of a solar-thermal power plant with energy storage and electricity buy-back from grid," Energy, Elsevier, vol. 51(C), pages 61-70.
    10. Agyenim, Francis & Eames, Philip & Smyth, Mervyn, 2010. "Heat transfer enhancement in medium temperature thermal energy storage system using a multitube heat transfer array," Renewable Energy, Elsevier, vol. 35(1), pages 198-207.
    11. Mawire, A. & McPherson, M. & van den Heetkamp, R.R.J., 2009. "Thermal performance of a small oil-in-glass tube thermal energy storage system during charging," Energy, Elsevier, vol. 34(7), pages 838-849.
    12. Herrmann, Ulf & Kelly, Bruce & Price, Henry, 2004. "Two-tank molten salt storage for parabolic trough solar power plants," Energy, Elsevier, vol. 29(5), pages 883-893.
    13. Li, Peiwen & Van Lew, Jon & Chan, Cholik & Karaki, Wafaa & Stephens, Jake & O’Brien, J.E., 2012. "Similarity and generalized analysis of efficiencies of thermal energy storage systems," Renewable Energy, Elsevier, vol. 39(1), pages 388-402.
    14. Gil, Antoni & Medrano, Marc & Martorell, Ingrid & Lázaro, Ana & Dolado, Pablo & Zalba, Belén & Cabeza, Luisa F., 2010. "State of the art on high temperature thermal energy storage for power generation. Part 1--Concepts, materials and modellization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 31-55, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. González-Roubaud, Edouard & Pérez-Osorio, David & Prieto, Cristina, 2017. "Review of commercial thermal energy storage in concentrated solar power plants: Steam vs. molten salts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 133-148.
    2. Khamlich, Imane & Zeng, Kuo & Flamant, Gilles & Baeyens, Jan & Zou, Chongzhe & Li, Jun & Yang, Xinyi & He, Xiao & Liu, Qingchuan & Yang, Haiping & Yang, Qing & Chen, Hanping, 2021. "Technical and economic assessment of thermal energy storage in concentrated solar power plants within a spot electricity market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    3. Opolot, Michael & Zhao, Chunrong & Liu, Ming & Mancin, Simone & Bruno, Frank & Hooman, Kamel, 2022. "A review of high temperature (≥ 500 °C) latent heat thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    4. Xu, Xinhai & Vignarooban, K. & Xu, Ben & Hsu, K. & Kannan, A.M., 2016. "Prospects and problems of concentrating solar power technologies for power generation in the desert regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1106-1131.
    5. Yang, Jialin & Yang, Lijun & Xu, Chao & Du, Xiaoze, 2016. "Experimental study on enhancement of thermal energy storage with phase-change material," Applied Energy, Elsevier, vol. 169(C), pages 164-176.
    6. Galione, P.A. & Pérez-Segarra, C.D. & Rodríguez, I. & Oliva, A. & Rigola, J., 2015. "Multi-layered solid-PCM thermocline thermal storage concept for CSP plants. Numerical analysis and perspectives," Applied Energy, Elsevier, vol. 142(C), pages 337-351.
    7. Martin Koller & Heimo Walter & Michael Hameter, 2016. "Transient Numerical Simulation of the Melting and Solidification Behavior of NaNO 3 Using a Wire Matrix for Enhancing the Heat Transfer," Energies, MDPI, vol. 9(3), pages 1-18, March.
    8. Gil, Antoni & Medrano, Marc & Martorell, Ingrid & Lázaro, Ana & Dolado, Pablo & Zalba, Belén & Cabeza, Luisa F., 2010. "State of the art on high temperature thermal energy storage for power generation. Part 1--Concepts, materials and modellization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 31-55, January.
    9. Liu, Ming & Steven Tay, N.H. & Bell, Stuart & Belusko, Martin & Jacob, Rhys & Will, Geoffrey & Saman, Wasim & Bruno, Frank, 2016. "Review on concentrating solar power plants and new developments in high temperature thermal energy storage technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1411-1432.
    10. Mawire, Ashmore & Taole, Simeon H., 2011. "A comparison of experimental thermal stratification parameters for an oil/pebble-bed thermal energy storage (TES) system during charging," Applied Energy, Elsevier, vol. 88(12), pages 4766-4778.
    11. Wei, Gaosheng & Wang, Gang & Xu, Chao & Ju, Xing & Xing, Lijing & Du, Xiaoze & Yang, Yongping, 2018. "Selection principles and thermophysical properties of high temperature phase change materials for thermal energy storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1771-1786.
    12. Hobold, Gustavo M. & da Silva, Alexandre K., 2017. "Critical phenomena and their effect on thermal energy storage in supercritical fluids," Applied Energy, Elsevier, vol. 205(C), pages 1447-1458.
    13. Alva, Guruprasad & Lin, Yaxue & Fang, Guiyin, 2018. "An overview of thermal energy storage systems," Energy, Elsevier, vol. 144(C), pages 341-378.
    14. Bravo, Ruben & Ortiz, Carlos & Chacartegui, Ricardo & Friedrich, Daniel, 2021. "Multi-objective optimisation and guidelines for the design of dispatchable hybrid solar power plants with thermochemical energy storage," Applied Energy, Elsevier, vol. 282(PB).
    15. Mostafavi Tehrani, S. Saeed & Shoraka, Yashar & Nithyanandam, Karthik & Taylor, Robert A., 2019. "Shell-and-tube or packed bed thermal energy storage systems integrated with a concentrated solar power: A techno-economic comparison of sensible and latent heat systems," Applied Energy, Elsevier, vol. 238(C), pages 887-910.
    16. Feng, Penghui & Wu, Zhen & Zhang, Yang & Yang, Fusheng & Wang, Yuqi & Zhang, Zaoxiao, 2018. "Multi-level configuration and optimization of a thermal energy storage system using a metal hydride pair," Applied Energy, Elsevier, vol. 217(C), pages 25-36.
    17. Fernandes, D. & Pitié, F. & Cáceres, G. & Baeyens, J., 2012. "Thermal energy storage: “How previous findings determine current research priorities”," Energy, Elsevier, vol. 39(1), pages 246-257.
    18. Han, Rui & Xing, Shuang & Wu, Xueqian & Pang, Caihong & Lu, Shuangchun & Su, Yun & Liu, Qingling & Song, Chunfeng & Gao, Jihui, 2022. "Relevant influence of alkali carbonate doping on the thermochemical energy storage of Ca-based natural minerals during CaO/CaCO3 cycles," Renewable Energy, Elsevier, vol. 181(C), pages 267-277.
    19. Wang, Y. & Barde, A. & Jin, K. & Wirz, R.E., 2020. "System performance analyses of sulfur-based thermal energy storage," Energy, Elsevier, vol. 195(C).
    20. Tehrani, S. Saeed Mostafavi & Taylor, Robert A. & Saberi, Pouya & Diarce, Gonzalo, 2016. "Design and feasibility of high temperature shell and tube latent heat thermal energy storage system for solar thermal power plants," Renewable Energy, Elsevier, vol. 96(PA), pages 120-136.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:68:y:2014:i:c:p:896-909. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.