IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i3p205-d65875.html
   My bibliography  Save this article

Transient Numerical Simulation of the Melting and Solidification Behavior of NaNO 3 Using a Wire Matrix for Enhancing the Heat Transfer

Author

Listed:
  • Martin Koller

    (Institute for Energy Systems and Thermodynamics, Technische Universität Wien, Getreidemarkt 9, 1060 Vienna, Austria)

  • Heimo Walter

    (Institute for Energy Systems and Thermodynamics, Technische Universität Wien, Getreidemarkt 9, 1060 Vienna, Austria)

  • Michael Hameter

    (Institute for Energy Systems and Thermodynamics, Technische Universität Wien, Getreidemarkt 9, 1060 Vienna, Austria)

Abstract

The paper presents the results of a transient numerical investigation of the melting and solidification process of sodium nitrate (NaNO 3 ), which is used as phase change material. For enhancing the heat transfer to the sodium nitrate an aluminum wire matrix is used. The numerical simulation of the melting and solidification process was done with the enthalpy-porosity approach. The numerical analysis of the melting process has shown that apart from the first period of the charging process, where heat conduction is the main heat transfer mechanism, natural convection is the dominant heat transfer mechanism. The numerical investigation of the solidification process has shown that the dominant heat transfer mechanism is heat conduction. Based on the numerical results, the discharging process has been slower than the charging process. The performance of the charged and discharged power has shown that the wire matrix is an alternative method to enhance the heat transfer into the phase change material.

Suggested Citation

  • Martin Koller & Heimo Walter & Michael Hameter, 2016. "Transient Numerical Simulation of the Melting and Solidification Behavior of NaNO 3 Using a Wire Matrix for Enhancing the Heat Transfer," Energies, MDPI, vol. 9(3), pages 1-18, March.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:3:p:205-:d:65875
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/3/205/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/3/205/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Salunkhe, Pramod B. & Shembekar, Prashant S., 2012. "A review on effect of phase change material encapsulation on the thermal performance of a system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5603-5616.
    2. Medrano, Marc & Gil, Antoni & Martorell, Ingrid & Potau, Xavi & Cabeza, Luisa F., 2010. "State of the art on high-temperature thermal energy storage for power generation. Part 2--Case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 56-72, January.
    3. Tay, N.H.S. & Belusko, M. & Bruno, F., 2012. "An effectiveness-NTU technique for characterising tube-in-tank phase change thermal energy storage systems," Applied Energy, Elsevier, vol. 91(1), pages 309-319.
    4. Agyenim, Francis & Eames, Philip & Smyth, Mervyn, 2010. "Heat transfer enhancement in medium temperature thermal energy storage system using a multitube heat transfer array," Renewable Energy, Elsevier, vol. 35(1), pages 198-207.
    5. Liu, Ming & Saman, Wasim & Bruno, Frank, 2012. "Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2118-2132.
    6. Laing, Doerte & Bauer, Thomas & Breidenbach, Nils & Hachmann, Bernd & Johnson, Maike, 2013. "Development of high temperature phase-change-material storages," Applied Energy, Elsevier, vol. 109(C), pages 497-504.
    7. Sharma, Atul & Tyagi, V.V. & Chen, C.R. & Buddhi, D., 2009. "Review on thermal energy storage with phase change materials and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(2), pages 318-345, February.
    8. Gil, Antoni & Medrano, Marc & Martorell, Ingrid & Lázaro, Ana & Dolado, Pablo & Zalba, Belén & Cabeza, Luisa F., 2010. "State of the art on high temperature thermal energy storage for power generation. Part 1--Concepts, materials and modellization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 31-55, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sebastian Gamisch & Stefan Gschwander & Stefan J. Rupitsch, 2021. "Numerical and Experimental Investigation of Wire Cloth Heat Exchanger for Latent Heat Storages," Energies, MDPI, vol. 14(22), pages 1-30, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohamed, Shamseldin A. & Al-Sulaiman, Fahad A. & Ibrahim, Nasiru I. & Zahir, Md. Hasan & Al-Ahmed, Amir & Saidur, R. & Yılbaş, B.S. & Sahin, A.Z., 2017. "A review on current status and challenges of inorganic phase change materials for thermal energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1072-1089.
    2. Yang, Jialin & Yang, Lijun & Xu, Chao & Du, Xiaoze, 2016. "Experimental study on enhancement of thermal energy storage with phase-change material," Applied Energy, Elsevier, vol. 169(C), pages 164-176.
    3. Tay, N.H.S. & Liu, M. & Belusko, M. & Bruno, F., 2017. "Review on transportable phase change material in thermal energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 264-277.
    4. Opolot, Michael & Zhao, Chunrong & Liu, Ming & Mancin, Simone & Bruno, Frank & Hooman, Kamel, 2022. "A review of high temperature (≥ 500 °C) latent heat thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    5. Castell, A. & Solé, C., 2015. "An overview on design methodologies for liquid–solid PCM storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 289-307.
    6. Ge, Haoshan & Li, Haiyan & Mei, Shengfu & Liu, Jing, 2013. "Low melting point liquid metal as a new class of phase change material: An emerging frontier in energy area," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 331-346.
    7. Zeinelabdein, Rami & Omer, Siddig & Gan, Guohui, 2018. "Critical review of latent heat storage systems for free cooling in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2843-2868.
    8. Costa, Sol Carolina & Kenisarin, Murat, 2022. "A review of metallic materials for latent heat thermal energy storage: Thermophysical properties, applications, and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    9. Lizarraga-Garcia, Enrique & Mitsos, Alexander, 2014. "Effect of heat transfer structures on thermoeconomic performance of solid thermal storage," Energy, Elsevier, vol. 68(C), pages 896-909.
    10. Cárdenas, Bruno & León, Noel, 2013. "High temperature latent heat thermal energy storage: Phase change materials, design considerations and performance enhancement techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 724-737.
    11. Liu, Ming & Steven Tay, N.H. & Bell, Stuart & Belusko, Martin & Jacob, Rhys & Will, Geoffrey & Saman, Wasim & Bruno, Frank, 2016. "Review on concentrating solar power plants and new developments in high temperature thermal energy storage technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1411-1432.
    12. Khamlich, Imane & Zeng, Kuo & Flamant, Gilles & Baeyens, Jan & Zou, Chongzhe & Li, Jun & Yang, Xinyi & He, Xiao & Liu, Qingchuan & Yang, Haiping & Yang, Qing & Chen, Hanping, 2021. "Technical and economic assessment of thermal energy storage in concentrated solar power plants within a spot electricity market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    13. Mao, Qianjun, 2016. "Recent developments in geometrical configurations of thermal energy storage for concentrating solar power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 320-327.
    14. Tiskatine, R. & Eddemani, A. & Gourdo, L. & Abnay, B. & Ihlal, A. & Aharoune, A. & Bouirden, L., 2016. "Experimental evaluation of thermo-mechanical performances of candidate rocks for use in high temperature thermal storage," Applied Energy, Elsevier, vol. 171(C), pages 243-255.
    15. Abujas, Carlos R. & Jové, Aleix & Prieto, Cristina & Gallas, Manuel & Cabeza, Luisa F., 2016. "Performance comparison of a group of thermal conductivity enhancement methodology in phase change material for thermal storage application," Renewable Energy, Elsevier, vol. 97(C), pages 434-443.
    16. Kenisarin, Murat & Mahkamov, Khamid, 2016. "Passive thermal control in residential buildings using phase change materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 371-398.
    17. Wei, Gaosheng & Wang, Gang & Xu, Chao & Ju, Xing & Xing, Lijing & Du, Xiaoze & Yang, Yongping, 2018. "Selection principles and thermophysical properties of high temperature phase change materials for thermal energy storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1771-1786.
    18. Alva, Guruprasad & Lin, Yaxue & Fang, Guiyin, 2018. "An overview of thermal energy storage systems," Energy, Elsevier, vol. 144(C), pages 341-378.
    19. Arteconi, A. & Hewitt, N.J. & Polonara, F., 2012. "State of the art of thermal storage for demand-side management," Applied Energy, Elsevier, vol. 93(C), pages 371-389.
    20. Qiu, Xiaolin & Li, Wei & Song, Guolin & Chu, Xiaodong & Tang, Guoyi, 2012. "Microencapsulated n-octadecane with different methylmethacrylate-based copolymer shells as phase change materials for thermal energy storage," Energy, Elsevier, vol. 46(1), pages 188-199.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:3:p:205-:d:65875. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.