IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v65y2014icp285-294.html
   My bibliography  Save this article

Integrating electric vehicles as flexible load in unit commitment modeling

Author

Listed:
  • Madzharov, D.
  • Delarue, E.
  • D'haeseleer, W.

Abstract

Fully EVs (electric vehicles) and PHEVs (plug-in hybrid electric vehicles) have attracted much attention in recent years. Towards an increasing share of EVs, their economic feasibility and impact on the electricity distribution have been studied in detail. However, little has been achieved in investigating the impact on the electricity generation systems. This paper presents a MILP (mixed-integer linear programming) unit commitment model with focus on the effect of EVs on the generation side. The most important advantage of the proposed method is the ability to solve systems with a very large number of EVs. The algorithm is demonstrated on a benchmark system, which has been widely used in the literature and has been used here for all scenarios. It is demonstrated that optimized charging (centrally controlled) is cheaper and allows for higher EV penetration, compared to random charging. Simulations were also run for two scenarios based on the advancement in the charging infrastructure: (1) perfect infrastructure, with opportunity for charging everywhere and (2) moderate infrastructure, where charging is possible only at the owners' homes. In both cases the generation cost increases by 1% for every 10% of additional EV penetration, the modest infrastructure case being slightly more expensive.

Suggested Citation

  • Madzharov, D. & Delarue, E. & D'haeseleer, W., 2014. "Integrating electric vehicles as flexible load in unit commitment modeling," Energy, Elsevier, vol. 65(C), pages 285-294.
  • Handle: RePEc:eee:energy:v:65:y:2014:i:c:p:285-294
    DOI: 10.1016/j.energy.2013.12.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213010669
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.12.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lund, Henrik & Kempton, Willett, 2008. "Integration of renewable energy into the transport and electricity sectors through V2G," Energy Policy, Elsevier, vol. 36(9), pages 3578-3587, September.
    2. Bellekom, Sandra & Benders, René & Pelgröm, Steef & Moll, Henk, 2012. "Electric cars and wind energy: Two problems, one solution? A study to combine wind energy and electric cars in 2020 in The Netherlands," Energy, Elsevier, vol. 45(1), pages 859-866.
    3. Ramteen Sioshansi & Paul Denholm, 2010. "The Value of Plug-In Hybrid Electric Vehicles as Grid Resources," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 1-24.
    4. Soares M.C. Borba, Bruno & Szklo, Alexandre & Schaeffer, Roberto, 2012. "Plug-in hybrid electric vehicles as a way to maximize the integration of variable renewable energy in power systems: The case of wind generation in northeastern Brazil," Energy, Elsevier, vol. 37(1), pages 469-481.
    5. Hill, Davion M. & Agarwal, Arun S. & Ayello, Francois, 2012. "Fleet operator risks for using fleets for V2G regulation," Energy Policy, Elsevier, vol. 41(C), pages 221-231.
    6. Sioshansi, Ramteen & Fagiani, Riccardo & Marano, Vincenzo, 2010. "Cost and emissions impacts of plug-in hybrid vehicles on the Ohio power system," Energy Policy, Elsevier, vol. 38(11), pages 6703-6712, November.
    7. Hadley, Stanton W. & Tsvetkova, Alexandra A., 2009. "Potential Impacts of Plug-in Hybrid Electric Vehicles on Regional Power Generation," The Electricity Journal, Elsevier, vol. 22(10), pages 56-68, December.
    8. Peng, Minghong & Liu, Lian & Jiang, Chuanwen, 2012. "A review on the economic dispatch and risk management of the large-scale plug-in electric vehicles (PHEVs)-penetrated power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1508-1515.
    9. Zhang, Qi & Mclellan, Benjamin C. & Tezuka, Tetsuo & Ishihara, Keiichi N., 2013. "A methodology for economic and environmental analysis of electric vehicles with different operational conditions," Energy, Elsevier, vol. 61(C), pages 118-127.
    10. Hedegaard, Karsten & Ravn, Hans & Juul, Nina & Meibom, Peter, 2012. "Effects of electric vehicles on power systems in Northern Europe," Energy, Elsevier, vol. 48(1), pages 356-368.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Richardson, David B., 2013. "Electric vehicles and the electric grid: A review of modeling approaches, Impacts, and renewable energy integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 247-254.
    2. Arslan, Okan & Karasan, Oya Ekin, 2013. "Cost and emission impacts of virtual power plant formation in plug-in hybrid electric vehicle penetrated networks," Energy, Elsevier, vol. 60(C), pages 116-124.
    3. Amirioun, Mohammad Hassan & Kazemi, Ahad, 2014. "A new model based on optimal scheduling of combined energy exchange modes for aggregation of electric vehicles in a residential complex," Energy, Elsevier, vol. 69(C), pages 186-198.
    4. Zhang, Qi & Mclellan, Benjamin C. & Tezuka, Tetsuo & Ishihara, Keiichi N., 2013. "A methodology for economic and environmental analysis of electric vehicles with different operational conditions," Energy, Elsevier, vol. 61(C), pages 118-127.
    5. Bellekom, Sandra & Benders, René & Pelgröm, Steef & Moll, Henk, 2012. "Electric cars and wind energy: Two problems, one solution? A study to combine wind energy and electric cars in 2020 in The Netherlands," Energy, Elsevier, vol. 45(1), pages 859-866.
    6. Schill, Wolf-Peter, 2011. "Electric Vehicles in Imperfect Electricity Markets: The case of Germany," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 39(10), pages 6178-6189.
    7. Hota, Ashish Ranjan & Juvvanapudi, Mahesh & Bajpai, Prabodh, 2014. "Issues and solution approaches in PHEV integration to smart grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 217-229.
    8. Nurre, Sarah G. & Bent, Russell & Pan, Feng & Sharkey, Thomas C., 2014. "Managing operations of plug-in hybrid electric vehicle (PHEV) exchange stations for use with a smart grid," Energy Policy, Elsevier, vol. 67(C), pages 364-377.
    9. Hedegaard, Karsten & Ravn, Hans & Juul, Nina & Meibom, Peter, 2012. "Effects of electric vehicles on power systems in Northern Europe," Energy, Elsevier, vol. 48(1), pages 356-368.
    10. Shareef, Hussain & Islam, Md. Mainul & Mohamed, Azah, 2016. "A review of the stage-of-the-art charging technologies, placement methodologies, and impacts of electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 403-420.
    11. Colmenar-Santos, Antonio & Borge-Diez, David & Ortega-Cabezas, Pedro Miguel & Míguez-Camiña, J.V., 2014. "Macro economic impact, reduction of fee deficit and profitability of a sustainable transport model based on electric mobility. Case study: City of León (Spain)," Energy, Elsevier, vol. 65(C), pages 303-318.
    12. Taljegard, M. & Göransson, L. & Odenberger, M. & Johnsson, F., 2019. "Impacts of electric vehicles on the electricity generation portfolio – A Scandinavian-German case study," Applied Energy, Elsevier, vol. 235(C), pages 1637-1650.
    13. Lena Ahmadi & Ali Elkamel & Sabah A. Abdul-Wahab & Michael Pan & Eric Croiset & Peter L. Douglas & Evgueniy Entchev, 2015. "Multi-Period Optimization Model for Electricity Generation Planning Considering Plug-in Hybrid Electric Vehicle Penetration," Energies, MDPI, vol. 8(5), pages 1-25, May.
    14. Aghaei, Jamshid & Nezhad, Ali Esmaeel & Rabiee, Abdorreza & Rahimi, Ehsan, 2016. "Contribution of Plug-in Hybrid Electric Vehicles in power system uncertainty management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 450-458.
    15. Dallinger, David & Gerda, Schubert & Wietschel, Martin, 2013. "Integration of intermittent renewable power supply using grid-connected vehicles – A 2030 case study for California and Germany," Applied Energy, Elsevier, vol. 104(C), pages 666-682.
    16. Weiller, C. & Neely, A., 2014. "Using electric vehicles for energy services: Industry perspectives," Energy, Elsevier, vol. 77(C), pages 194-200.
    17. Yang, Zhile & Li, Kang & Foley, Aoife, 2015. "Computational scheduling methods for integrating plug-in electric vehicles with power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 396-416.
    18. Zhao, Yang & Tatari, Omer, 2015. "A hybrid life cycle assessment of the vehicle-to-grid application in light duty commercial fleet," Energy, Elsevier, vol. 93(P2), pages 1277-1286.
    19. Jochem, Patrick & Babrowski, Sonja & Fichtner, Wolf, 2015. "Assessing CO2 emissions of electric vehicles in Germany in 2030," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 68-83.
    20. Kelly, Jarod C. & MacDonald, Jason S. & Keoleian, Gregory A., 2012. "Time-dependent plug-in hybrid electric vehicle charging based on national driving patterns and demographics," Applied Energy, Elsevier, vol. 94(C), pages 395-405.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:65:y:2014:i:c:p:285-294. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.